Nouveaux Supraconducteurs :

2008 : les « oxypnictides » de fer

P. Toulemonde

Institut Néel, Grenoble.

PLAN

- Introduction: Historique

- Cristallographie des différentes familles de composés supraconducteurs à base de tétraèdre de fer

- LnFeAs(O,F) avec Ln = La, Ce, Pr, Nd, Sm
- (AE, A)Fe₂As₂ avec AE = Ca, Sr, Ba et A = Li, K, Cs
- A_x FeAs avec A = Li, Na
- FeSe_{1-x}

- Facteurs structuraux contrôlant la supra (différences & similitudes avec les cuprates)

- Elaboration : poudres & monocristaux
 - tube scellé
 - haute pression haute température
- Propriétés électroniques & paramètres fondamentaux supra
 - structure électronique
 - existence d'une onde de densité de spins (non supra)
 - transition structurale (non supra)
 - diagramme de phase
 - gap supra, paramètre d'ordre

- Contribution de l'Institut Néel @ Grenoble: élaboration & études sous HP

Arsenic heats up iron superconductors

Every week, scientists

are posting papers on the preprint server arXiv with new proclamations of the material's properties. "It's phenomenal, because we've broken the tyranny of copper," says Paul Canfield, a physicist at the Ames Laboratory in Iowa.

The iron-based family might provide a fresh opportunity to engineer superconductors that operate at practical temperatures. It also offers chemists a chance to finally figure out how high-temperature superconductors work.

Plus de 450 preprints depuis mars 2008 sur ArXiv/condmat !

Much work remains. The researchers have so far worked only with superconducting powders and need to grow crystals, which are more useful for experiments. Copper-based superconductors are easy to work with, but the <u>new family involves a trickier chemistry</u>, and there is the <u>toxicity and volatility of arsenic</u> to consider. Last month, <u>a sealed tube of arsenic</u> exploded at the Argonne National Laboratory in Illinois, when a research group started to synthesize the new material for the first time. No one was hurt, but some academics won't work with arsenic because they don't want their graduate students to take risks.

Introduction : Historique

2006: LaFePO $T_c = 3.2 \text{ K}$

Published on Web 07/15/2006

Iron-Based Layered Superconductor: LaOFeP

Yoichi Kamihara,[†] Hidenori Hiramatsu,[†] Masahiro Hirano,^{†,‡} Ryuto Kawamura,[§] Hiroshi Yanagi,[§] Toshio Kamiya,^{†,§} and Hideo Hosono*.^{↑,‡}

ERATO-SORST, JST, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, and Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-4, 4259 Nagatsuta, Yokohama 226-8503, Japan

Received May 15, 2006; E-mail: hosono@msl.titech.ac.jp

Groupe d'Hosono (Japon)

2007: LaNiPO T_c= 3-7K

Nickel-Based Oxyphosphide Superconductor with a Layered Crystal Structure, LaNiOP

Takumi Watanabe,† Hiroshi Yanagi,† Toshio Kamiya,†‡ Yoichi Kamihara,‡ Hidenori Hiramatsu,‡ Masahiro Hirano,‡§ and Hideo Hosono*,†‡§

Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Japan, ERATO-SORST, JST, in the Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Japan, and Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Japan

Figure 1. Crystal structure of LaMOP (M = divalent transition-metal cation). The yellow polyhedron indicates the MP₄ tetrahedron. LaO and MP layers are alternately stacked along the *c* axis.

Figure 3. Temperature (*T*) dependence of the electrical resistivity (ρ) at 0 Oe. The inset shows the $\rho-T$ curves as a function of the magnetic field magnified in the temperature range of 1.9–10 K.

2008: Supraconductivité à T_c= 26 K dans LaFeAs(O_{1-x}F_x) !!! Groupe d'Hosono, J. Am. Chem. Soc. 130.

Iron-Based Layered Superconductor La[$O_{1-x}F_x$]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*,† Takumi Watanabe,‡ Masahiro Hirano,†.§ and Hideo Hosono†,‡.§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp

- Supra à base de fer !
- Structure « lamellaire » \leftrightarrow plans CuO₂ des **cuprates**!
- (La³⁺O²⁻)(Fe²⁺As³⁻) : **transfert de charges** réservoir de charges vers bloc supra

LaFeAsO

Crystal data

Crystal system Space group Unit cell dimensions tetragonal *P* 4/n m m (no. 129) *a* = 4.03 Å *c* = 8.74 Å

Atomic coordinates

Atom	Wyck.	X	У	Z
La1	2 <i>c</i>	1/4	1/4	0.1399(2)
Fe1	2b	3/4	1/4	1/2
As1	2 <i>c</i>	1/4	1/4	0.6565(3)
01	2a	3/4	1/4	0

Atomic coordinates

Wyck.	X	У	Z
2c	1/4	1/4	0.2246(6)
2b	1/4	3/4	1/2
2c	1/4	1/4	0.6793(8)
2a	1/4	3/4	0
	Wyck. 2c 2b 2c 2a	Wyck.x2c1/42b1/42c1/42a1/4	Wyck.xy2c1/41/42b1/43/42c1/41/42a1/43/4

1995	Familles LnO FeP (Ln = La-Nd, Sm, Gd) LnO RuP (Ln = La-Nd, Sm, Gd) LnO CoP (Ln = La-Nd, Sm)	flux d'étain structure type ZrCuSiAs P4/nmm	B.I. Zimmer, W. Jeitschko et al. J. Alloy Comp., 229 (1995) 238 [Münster]
1998	RO ZnP (R = Y, La-Nd, Sm, Gd-Tm) RO ZnAs (R) Y, La-Nd, Sm, Gd-Dy)	flux NaCl/KCl R -3m ou P4/nmm	A.T. Nientiedt and W. Jeitschko, Inorg. Chem. 37 (1998) 386-389 [Münster]
2000	RO FeAs (R = La–Nd, Sm, Gd) RO RuAs (R = La–Nd, Sm, Gd–Dy) RO CoAs (R = La–Nd)	flux NaCl/KCl P4/nmm	P. Quebe, L.J. Terbüchte, W. Jeitschko, Journal of Alloys and Compounds 302 (2000) 70–74 [Münster]
2006	CeO <mark>ZnP</mark> PrO <mark>ZnP</mark>	flux NaCl/KCl R -3m ou P4/nmm	H. Lincke, T. Nilges, and R. Pöttgen, Z. Anorg. Allg. Chem. 632 (2006) 1804-1808 [Münster]

Plus de 150 composés de structure du type « ZrCuSiAs » !

Fig. 1. Cell volumes of compounds RTPnO (T=Fe, Ru, Co; Pn=P, As) with ZrCuSiAs type structure.

Fig. 1 Photographs of flux grown single crystals of the $\alpha-$ and $\beta-$ modifications of CeZnPO and PrZnPO. The edge lengths of the crystals are ca. 50 $\mu m.$

Famille LnFeAsO [Ln = La, Ce, Pr, Nd,n Sm, Gd, Tb] = Ln-1111

Existe aussi la supra dans $(\mathbf{Sr}_{1-x}\mathbf{La}_x)\mathbf{FeAsF} \text{ à } \mathbf{T}_c = 36\mathbf{K}$ et dans $\mathbf{Ca}(\mathbf{Fe}_{1-x}\mathbf{Co}_x)\mathbf{AsF}$ $\mathbf{a} \mathbf{T}_c = 20\mathbf{K}$

2006	La FeP (O,F)	T _c = 4 – 7K	3.964 Å	8.512 Å	
2007	La NiP O	$T_{c} = 3 - 4 K$			
2008	LaFeAs(O,F) (dopage	T _c = 26 K (41K?)	4.032 Å	8.726 Å	1150°C / 48h
	électrons)				6 GPa 1250°C / 2h (O _{0.4} F _{0.6})
	(La, Sr²⁺)FeAs O (dopage trous)	T _c = 25 K	4.035 Å	8.771 Å	
	(La, <mark>Sr²+)NiAs</mark> O	T _c = 2.7–3.7K			1150°C / 48h
	Ce <mark>FeAs</mark> (O,F)	T _c = 41 K	3.989 Å	8.631 Å	1150 °C / 50h
	PrFeAs(O,F)	T _c = 50-52 K	3.967 Å	8.561 Å	6 GPa 1250°C / 2h
	NdFeAs(O,F)	T _c = 51 K			3.3 à 6GPa 1300 à 1400°C 2-8h
	SmFeAs(O,F)	T _c = 43 – 54K	3.943 Å	8.514 Å	
	GdFeAs(O,F)	T _c = 10 – 36K	4.001 Å	8.650 Å	
	(Gd, Th⁴⁺)FeAs O	T _c = 56 K	3.917 Å	8.440 Å	1150°C / 48h
	GdFeAs(O _{1-δ})	T _c = 53 K	3.890 Å	8.383 Å	6 GPa 1350°C 2h
	EuFeAs(O,F), TmFeAs(O,F)	Phase non formée			1150 °C /24-50 h
	La RuAs (O,F), Ce RuAs (O,F)	Métallique			1150 °C /24-50 h
	LaNiAsO	T _c = 4 K	4.123 Å	8.188 Å	1000°C / 24 h
	La <mark>NiBi</mark> (O _{1-ō})	T _c = 4 K	4.073 Å	9.301 Å	800°C / 10 h

Famille (AE,A)Fe₂As₂ [AE = Ba,Sr,Ca et A=Cs,Rb,K] = AE-122

LnFeAsO (dopé: $T_{cmax} = 55 \text{ K pour Sm}$) BaFe₂As₂ (dopé: T_{c max}=38K)

Ln-As: 3.36Å Fe-As: 2.435Å Fe-Fe: 2.85Å et 8.74Å Fe-Fe: 2.80Å et 6.51Å

As-Fe-As: 111.6° et 108.4°

As-Fe-As: 111.1° et 108.7°

Ba-As: 3.38Å

Fe-As: 2.40Å

Crystal data	
Crystal system	tetra
Space group	/ 4/m
Unit cell dimensions	a = 3

∠^b gonal n m m (no. 139) 3.9625(1) Å c = 13.0168(3) Å

●Ba+1 ●Fe+2 ●As-3

Atomic coordinates

Atom	Wyck.	X	У	Z
Ba	2a	0	0	0
Fe	4 <i>d</i>	0	1/2	1/4
As	4e	0	0	0.3545(1)

Famille AFeAs [A = Na,Li] = A-111

NaFeAs et LiFeAs (Oxford)

 $Fe_2As = FeFeAs$

A FeAs	Li	Na
M-As (Å)	2.76	2.99
Fe-As (Å)	2.41	2.437
Fe-Fe (Å)	2.775 et <mark>6.35</mark>	2.793 et 7.04
As-Fe-As (°)	112.9 et 102.9	108.3 et 110.1
T _c (K)	18 K	9 K

. .

		<u>Crystal data</u>	
<u>Crystal data</u>		Crystal system	tetragonal
Crystal system	tetragonal	Space group	<i>P</i> 4/n m m (no. 129)
Space group	P 4/n m m (no. 129) a = 3.7754 Å $c = 6.3534 Å$	Unit cell dimensions	<i>a</i> = 3.6300 Å <i>c</i> = 5.9800 Å
	a = 5.775+ A C = 0.555+ A	Atomic coordinates	

Atomic coordinates									
Atom	Wyck.	x	У	Z	Atom	Wyck.	X	У	Z
Fe1	2a	0	Ō	0	As1	2c	0	1/2	0.73500
Li1	2c	1/2	0	0.65380	Fe1	2 <i>a</i>	0	0	0
As1	2 <i>c</i>	1/2	0	0.23685	Fe2	2 <i>c</i>	0	1/2	0.33000

Famille $Fe_yFe(Se_{1-x}Ch_x)$ [Ch = S, Te] = Fe-111

 $FeSe_{1-x}$ F.-C. Hsu et al. Condmat #0807.2369 $T_c max = 8 K$
 $FeSe_{1-x}$ Y. Mizuguchi et al. condmat #0807.4315 $T_{c \text{ onset}} max = 27K$ @ 1.5GPa

 $Na_{0.1}FeSe Fe_{0.92}Co_{0.08}Se$ Z.Liu et al.condmat #08081784 Tc = 8.3-8.4K

 $Fe(Se_{1-x}S_x ou Te_x)$ Y. Mizuguchi et al. condmat #0811.1123 $T_c max = 15K$

Superconductivity at 27 K in tetragonal FeSe under high pressure

Yoshikazu Mizuguchi^{1,2}, Fumiaki Tomioka¹, Shunsuke Tsuda^{1,3}, Takahide Yamaguchi1 and Yoshihiko Takano1,2

- 1. National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047, Japan
- 2. University of Tsukuba, 1-1-1, Tennodai, Tsukuba, 305-8577, Japan
- 3. WPI-MANA-NIMS, 1-1, Namiki, Tsukuba, 305-0044, Japan

Abstract

A huge enhancement of the superconducting transition temperature *T*c was observed in tetragonal FeSe superconductor under high pressure. The onset temperature became as high as 27 K at 1.48 GPa and the pressure coefficient showed a huge value of 9.1 K/GPa. The upper critical field H_{c2} was estimated to be ~ 72 T at 1.48 GPa. Because of the high H_{c2} , FeSe system may be a candidate for application as superconducting wire rods. Moreover, the investigation of superconductivity on simple structured FeSe may provide important clues to the mechanism of superconductivity in iron-based superconductors.

D'autres familles ?

Chemistry of layered *d*-metal pnictide oxides and their potential as candidates for new superconductors Tadashi C. Ozawa*† and Susan M. Kauzlarich‡ †Nanoscale Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan ‡Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, U.S.A.

Condmat #0808.1158

D'autres familles ?

Intercroissances: approche du groupe de R.J.Cava (USA)

Figure 1. (color on line) La₃Ni₄P₄O₂ is a member of a series of compounds built by inserting charged ions or layers between M_2X_2 sheets of the parent β -FeSe structure. All of the new, known Fe- and Ni- based superconductors are members of this family. The La³⁺ and O⁻² ions are drawn with ionic radii and the M and X atoms are drawn using covalent radii.

Condmat 0808.1557

Bilan: facteurs structuraux contrôlant la supraconductivité:

Rappelle les cuprates... lorsque le « buckling » dans plans CuO₂ détériorait la supra

Bilan: facteurs structuraux contrôlant la supraconductivité:

Empiriquement:

(2) T_c augmente lorsque les plans supra Fe_2As_2 sont plus distants les uns des autres:

T _{c max}	d Fe-Fe	famille
55 K	8.7 Å	Ln-1111
38 K	6.5 Å	(AE,A)-122
18 K	6.35 Å	A-111
8 K	5.5 Å	Fe _{1+v} Se (Fe-111)

Rappelle les cuprates dont la T_c augmentait avec la distance séparant les blocs supra...

Augmenter d(Fe-Fe) pour améliorer T_c?

 $(Sr_3Sc_2O_5)Fe_2As_2$ as a possible parent compound for the FeAs-based superconductors

Condmat #08**11**.2205

Xiyu Zhu, Fei Han, Gang Mu, Peng Cheng, Bing Shen, Bin Zeng, and Hai-Hu Wen*

National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China

Famille $(Cu_2S_2)(Sr_{n+1}M_nO_{3n-1})$ avec M=Sc, Ti, Cu... Otzschi et al. J. of Low Temp. Phys. 117, 729-733 (1999).

Chimie des supra au fer:

- Elaboration difficile:

- utilisation de produits toxiques!
- Ln-1111 dopé: 5 éléments chimiques!
- Ln-1111: peu d'oxygène dans la maille, nécessite un contrôle fin!
- Ln-1111 dopé fluor: différence entre taux (Fluor) nominal et réel!
- diagramme de phases parfois très compliqué avec polytypes (ex: Fe-Se)

- Propriétés physiques très sensibles à la **stœchiométrie** des échantillons: résultats parfois opposés dans la littérature

- Plus généralement: **composition exacte** des échantillons produits pas toujours bien connus avant études physiques fines \rightarrow résultats contradictoires dans la littérature

Toxicité des nouveaux supra à base de Fe-As ?

In Vitro Studies of Cells Grown on the Superconductor PrO_xFeAs *Condmat* #0809.2169 Shaoguang Yang^{1*}, Yuxuan Xie², Wenrong Yang², Rongkun Zheng², Frankie Stevens², Emine Korkmaz², Anthony S. Weiss³, Simon P. Ringer², Filip Braet^{2*}

* Corresponding authors sgyang@nju.edu.cn and f.braet@usyd.edu.au

National Laboratory of Microstructures, Nanjing University, Nanjing, China
 Australian Key Centre for Microscopy and Microanalysis, The University of Sydney
 School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, Australia.

Abstract

The recent discovery of arsenic-based high temperature superconductors has reignited interest in the study of superconductor : biological interfaces. However, the new superconductor materials involve the chemistry of arsenic, their toxicity remain unclear [Nature, 2008, 452(24):922]. In this study the possible adverse effects of this new family of superconductors on cells have been examined. Cell culture studies in conjunction with microscopy and viability assays were employed to examine the influence of arsenic-based superconductor PrO_xFeAs (x=0.75) material *in vitro*. Imaging data revealed that cells were well adhered and spread on the surface of the superconductor. Furthermore, cytotoxicity studies showed that cells were unaffected during the time-course of the experiments, providing support for the biocompatibility aspects of PrO_xFeAs -based superconductor material.

Chimie des supra au fer: exemple de controverse: LaFePO

Résultats contradictoires: importance de la non stœchiométrie!

Electromagnetic properties and electronic structure of iron-based layered

superconductor LaOFeP

Intrinsic Properties of Stoichiometric LaOFeP

T. M. McQueen¹, M. Regulacio¹, A. J. Williams¹, Q. Huang², J. W. Lynn², Y. S. Hor¹, D.V. West¹, M. A. Green^{2,3}, and R. J. Cava¹

Yoichi Kamihara,¹ Masahiro Hirano,^{1,2} Hiroshi Yanagi,³ Toshio Kamiya,^{1,3} Yuji Saitoh,⁴

Eiji Ikenaga,⁵ Keisuke Kobayashi,^{5,6} and Hideo Hosono¹⁻³

Supra!

Non supra!

Chimie des supra au fer: exemple de controverse: **Fe-Se**

Condmat #0811.1613

Extreme Sensitivity of Superconductivity to Stoichiometry in $Fe_{1+\delta}Se$

T. M. McQueen¹, Q. Huang², V. Ksenofontov³, C. Felser³, Q. Xu⁴, H. Zandbergen⁴, Y. S. Hor¹,

J. Allred¹, A. J. Williams¹, D. Qu⁵, J. Checkelsky⁵, N. P. Ong⁵ and R. J. Cava¹

Abstract

The recently discovered iron arsenide superconductors, which display superconducting transition temperatures as high as 55 K, appear to share a number of general features with high- T_c cuprates, including proximity to a magnetically ordered state and robustness of the superconductivity in the presence of disorder. Here we show that superconductivity in $Fe_{1+\delta}Se$, the parent compound of the superconducting arsenide family, is destroyed by very small changes in stoichiometry. Further, we show that nonsuperconducting $Fe_{1+\delta}Se$ is not magnetically ordered down to low temperatures. These results suggest that robust superconductivity and immediate instability against an ordered magnetic state should not be considered as intrinsic characteristics of iron-based superconducting systems, and that $Fe_{1+\delta}Se$ may present a unique opportunity for determining which materials characteristics are critical to the existence of superconductivity in high T_c iron arsenide superconductors and which are not.

Condmat #0811.1613

Extreme Sensitivity of Superconductivity to Stoichiometry in $Fe_{1+\delta}Se$

T. M. McQueen¹, Q. Huang², V. Ksenofontov³, C. Felser³, Q. Xu⁴, H. Zandbergen⁴, Y. S. Hor¹, J. Allred¹, A. J. Williams¹, D. Qu⁵, J. Checkelsky⁵, N. P. Ong⁵ and R. J. Cava¹

- -impuretés Fe₃O₄ (non visibles en DRX!)
- vieillissement et contamination de l'échantillon avec O
- composé supra proche de Fe_{1.01}Se_{1.0}

Elaboration de poudres: (1) tube scellé

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

La(O,F)FeAs

Yoichi Kamihara,*,† Takumi Watanabe,‡ Masahiro Hirano,†.§ and Hideo Hosono†,‡.§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp

Polycrystalline LaOFeAs was synthesized by heating a mixture of lanthanum arsenide, iron arsenide, and dehydrated La_2O_3 powders in a silica tube filled with Ar gas at 1250 °C for 40 h, a procedure similar to that employed for LaOFeP.⁸ Ca²⁺ and F⁻ ion doping was performed by adding CaO and a 1:1 mixture of LaF₃ and La, respectively, to the starting material. The crystal structure, phase

Superconducting properties of Fe-based layered superconductor $LaO_{0.9}F_{0.1-\delta}FeAs$

G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, J. L. Luo, and N. L. Wang Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China

We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the new superconductor has a rather high upper critical field of about 54 T. A clear signature of superconducting gap opening below T_c was observed in the far-infrared reflectance spectra, with $2\Delta/kT_c \approx 3.5-4.2$. Furthermore, we show that the new superconductor has electron-type conducting carrier with a rather low carrier density.

The polycrystalline samples were prepared by the solid state reaction using LaAs, Fe₂O₃, Fe and LaF₃ as starting materials. Different from the synthesis method reported by Kamihara et al. [6], we use Fe₂O₃ as a source of oxygen instead of La₂O₃ due to the high stability of Lanthanum oxide. Lanthanum arsenide (LaAs) was obtained by reacting La chips and As pieces at 500 °C for 12 h then at 850 °C for 2h. Mixtures of four components were ground thoroughly and cold-pressed into pellets. The pellets were placed into Ta crucible and sealed in quartz tube under argon atmosphere. They were then annealed for 50 h at a temperature of 1150 °C.

Elaboration de poudres: (1) tube scellé

doi:10.1038/nature07045

¹Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Superconductivity at 43 K in SmFeAsO_{1-x}F_x

X. H. Chen¹, T. Wu¹, G. Wu¹, R. H. Liu¹, H. Chen¹ & D. F. Fang¹

Polycrystalline samples with nominal composition $SmFeAsO_{1-x}F_x$ (x = 0.15) were synthesized by conventional solid state reaction using high-purity SmAs, SmF_3 , Fe and Fe_2O_3 as starting materials. SmAs was obtained by reacting Sm chips and As pieces at 600 °C for 3 h and then 900 °C for 5 h. The raw materials were thoroughly ground and pressed into pellets. The pellets were wrapped in Ta foil, sealed in an evacuated quartz tube, and finally annealed at either 1,160 °C or 1,200 °C for 40 h.

nature

+ | T F R S

Elaboration de poudres: (2) haute pression – haute température

EPL, 82 (2008) 57002 doi: 10.1209/0295-5075/82/57002

Superconductivity in the iron-based F-doped layered quaternary compound $Nd[O_{1-x}F_x]FeAs$

ZHI-AN REN^(a), JIE YANG, WEI LU, WEI YI, XIAO-LI SHEN, ZHENG-CAI LI, GUANG-CAN CHE, XIAO-LI DONG, LI-LING SUN, FANG ZHOU and ZHONG-XIAN ZHAO^(b)

National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences - P. O. Box 603, Beijing 100190, PRC

received 1 April 2008; accepted in final form 7 April 2008 published online 19 May 2008

PACS 74.10.+v - Occurrence, potential candidates
PACS 74.70.Dd - Ternary, quaternary, and multinary compounds (including Chevrel phases, borocarbides, etc.)

Abstract – Here we report a new quaternary iron-arsenide superconductor $Mo[O_{1-x}F_x]FeAs$, with the onset resistivity transition at 51.9 K and Meissner transition at 51 K. This compound has the same crystal structure as LaOFeAs, and becomes the second superconductor after $Pr[O_{1-x}F_x]FeAs$ that superconducts above 50 K.

The superconducting $Nd[O_{1-x}F_x]FeAs$ samples were prepared by a high pressure synthesis method directly. Nd pieces, As, Fe, Fe₂O₃, FeF₃ powders (the purities of all starting chemicals are better than 99.99%) were mixed together according to the nominal stoichiometric ratio of $Nd[O_{0.89}F_{0.11}]FeAs$, then ground thoroughly and pressed into small pellets. The pellets were sealed in boron nitride crucibles and sintered in a high-pressure synthesis apparatus under the pressure of 6 GPa and temperature of 1300 °C for 2 hours. Here the adoption of high pressure

Élaboration HP-HT:

- Contrôle plus précis du taux de fluor
- Composés lacunaires en O type LnFeAsO_{1-delta}
- Compo avec petites terre rares
- Nouvelles
- compositions/surstructures?

www.epljournal.org

Monocristaux de supra au fer ?

Famille Ln-1111

Figure 3. SmFeAsO_{1-x}Fy single crystals grown from NaCl/KCl flux at high pressure. The length of crystals is about 100 μ m.

Condmat #0806.0337, J. Phys. Cond. Mat. 20 (2008)

Single crystals of superconducting SmFeAsO_{1-x}F_y grown at high pressure

N D Zhigadlo, S Katrych, Z Bukowski, and J Karpinski

Laboratory for Solid State Physics, ETH, 8093 Zurich, Switzerland

E-mail: karpinski@phys.ethz.ch and zhigadlo@phys.ethz.ch

Abstract. Single crystals of SmFeAsO_{1-x} F_y of a size up to 100x100 μ m² have been grown from NaCl/KCl flux at pressure of 30 kbar and temperature of 1350-1450 °C using cubic anvil high-pressure technique. Superconducting transition temperature of the obtained single crystals varies between 45 and 53 K. Structure refinement has been performed on single crystal. Differential thermal analysis investigations at 1 bar Ar pressure show decomposition of SmFeAsO_{1-x} F_y at 1302 °C.

> - Elaboration HP-HT - Flux NaCl/KCl

Famille AE-122

Condmat #0806.1874

Anisotropic thermodynamic and transport properties of single crystalline $(Ba_{1-x}K_x)Fe_2As_2$ (x = 0 and 0.45).

N. Ni^{1,2}, S. L. Bud'ko^{1,2}, A. Kreyssig^{1,2}, S. Nandi^{1,2}, G. E. Rustan^{1,2}, A. I.

Goldman^{1,2}, S. Gupta^{1,3}, J. D. Corbett^{1,3}, A. Kracher¹, and P. C. Canfield^{1,2}

¹Ames Laboratory US DOE, Iowa State University, Ames, Iowa 50011

²Department of Physics and Astronomy,

Iowa State University, Ames, Iowa 50011 and

³Department of Chemistry, Iowa State University, Ames, Iowa 50011

(Dated: June 11, 2008) Abstract

Flux Sn !

Single crystals of BaFe₂As₂ and (Ba_{0.55}K_{0.45})Fe₂As₂ have been grown out of excess Sn with 1% or less incorporation of solvent. The crystals are exceptionally micaceous, are easily exfoliated and can have dimensions as large as <u>3 x 3 x 0.2 mm³</u>. The BaFe₂As₂ single crystals manifest a structural phase transition from a high temperature tetragonal phase to a low temperature orthorhombic phase near 85 K and do not show any sign of superconductivity down to 1.8 K. This transition can be detected in the electrical resistivity, specific heat and the anisotropic magnetic susceptibility. In the (Ba_{0.55}K_{0.45})Fe₂As₂ single crystals this transition is suppressed and instead superconductivity occurs with a transition temperature near 30 K. Whereas the superconducting transition is easily detected in resistivity and magnetization measurements, the change in specific heat near T_c is small, but resolvable, giving $\Delta C_p / \gamma T_c \approx 1$. The application of a 140 kOe magnetic field suppresses T_c by only ~ 4 K when applied along the c-axis and by ~ 2 K when applied perpendicular to the *c*-axis. The ratio of the anisotropic upper critical fields, $\gamma = H \frac{1c}{c^2} / H \frac{|c|}{c^2}$, varies between 2.5 and 3.5 for temperatures down to ~ 2 K below T_c .

FIG. 14: Anisotropic $H_{c2}(T)$ plot for $H \leq 140$ kOe. Inset: $\gamma = H_{c2}^{\perp c}/H_{c2}^{\parallel c}$ as a function of temperature just below T_c .

FIG. 1: Photograph of a single crystal of $(Ba_{0.55}K_{0.45})Fe_2As_2$ on a mm grid. The crystallographic *c*-axis is perpendicular to the plane of the plate. Droplets of Sn flux can be seen on the surface.

Famille AE-122

Wang et al. condmat #0806.2452

Sizable single crystals of $BaFe_2As_2$ have been grown with self-flux method. The crystals are plate-like with c-axis perpendicular to the plane. The size can be as large as $3 \ge 5 \ge 0.2 \text{ mm}^3$. The resistivity anisotropy (ρ_c/ρ_{ob}) is as large as about 150, and independent of temperature. The transport in ab plane and along c-axis direction shares the same scattering mechanism. In contrast to the magnetic behavior of polycrystalline samples, no Curie-Weiss behavior are observed, a temperature linear dependent susceptibility occurs above spindensity-wave (SDW) transition. The susceptibility behavior is very similar to that of antiferromagnetic SDW chromium. Magnetic behavior of single crystal definitely gives evidence for existence of local moment except for the contribution to susceptibility from itinerant electrons. A resistivity minimum strongly dependent on magnetic field is observed. A $\log(1/T)$ divergency, similar to that of the underdoped cuprates, happens at low temperature. Here we first present intrinsic transport and magnetic properties, and their anisotropy from high quality single crystal.

Flux FeAs

A propos de l'anisotropie dans ces supra à base de fer:

Diminishing superconducting anisotropy in a layered iron arsenic $PrFeAsO_{1-y}$ single crystal

Daichi Kubota¹ and Takekazu Ishida^{1,2*} ¹Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan and ²Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

Motoyuki Ishikado and Shin-ichi Shamoto Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Naka, Ibaraki 319-1195, Japan

Hiroshi Eisaki, Hijiri Kito, and Akira Iyo Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan (Dated: October 30, 2008)

The magnetic torque of a high-quality $PrFeAsO_{1-y}$ single crystal has been investigated at temperatures from 10 K to 45 K in magnetic fields from 5 kG and 50 kG. We find that the superconducting anisotropy γ in $PrFeAsO_{1-y}$ can be approximated by $\gamma = 1.08 + 0.0068T$ in all fields by employing the Kogan model. The reduced superconducting anisotropy in the $PrFeAsO_{1-y}$ crystal seems to be very promising in considering various high- J_c applications.

γ	Method	Material	Carrier	Reference
1.2	torque	$PrFeAsO_{1-y}$	electron	this work
1.2	$\operatorname{transport}$	$Sr(Fe_{1-x}Co_x)_2As_2$	electron	[4]
1.5	$\operatorname{transport}$	$Ba(Fe_{1-x}Co_x)_2As_2$	electron	[34]
6	$\operatorname{transport}$	$\rm NdFeAsO_{0.82}F_{0.18}$	electron	[35]
9	torque	${ m SmFeAsO}_{0.8}{ m F}_{0.2}$	electron	[36]
15	$\operatorname{transport}$	$LaFeAsO_{0.89}F_{0.11}$	electron	[37]
65	$\operatorname{transport}$	$\rm SmFeAsO_{0.85}$	electron	[22]

TABLE I: Comparison of the γ values reported in the literature [4, 22, 34, 35, 36, 37]. The anisotropy γ varies very widely from 1.2 to 65. The experimental means and the type of superconducting carriers are also listed.

Famille AE-122

Rei MORINAGA¹, Kittiwit MATAN¹, Hiroyuki S. SUZUKI² and Taku J. SATO^{1*}

¹Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106, Japan

² National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Ternary Ba-Fe-As system has been studied to determine a primary solidification field of the BaFe₂As₂ phase. We found that the BaFe₂As₂ phase most likely melts congruently and primarily solidifies either in the FeAs excess or BaAs₂ excess liquid. Knowing the primary solidification field, we have performed the vertical Bridgman growth using the starting liquid composition of Ba₁₅Fe_{42.5}As_{42.5}. Large single crystals of the typical size 10x4x2 mm³ were obtained and their quality was confirmed by X-ray Laue and neutron diffraction.

Condmat #0809.3084

Fig. 5. A photograph of the resulting Bridgman-grown ingot. The bottom part, where the growth of the single grains was confirmed, was broken into pieces on removal from the crucible. Inset: the two pieces of the single grains obtained from the bottom part of the ingot. Indeed, the two pieces came from the same grain, but were torn in parts when they were removed. The thickness of each piece is about 2 mm.

Famille « FeSe »

Zhang et al. condmat 0809.1905

Fig. 1 S. B. Zhang

Crystal growth and superconductivity of FeSex

S. B. Zhang, Y. P. Sun^{*}, X. D. Zhu, X. B. Zhu, B. S. Wang, G. Li, H. C. Lei, X. Luo, Z. R. Yang, W.H.Song and J.M. Dai Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China

ABSTRACT

Single crystals FeSe_x have been grown in evacuated sealed quartz tube using a NaCl/KCl flux. The products include two crystal structures of tetragon and hexagon. The electronic transport and magnetic properties measurements of FeSe_x single crystal exhibits a superconducting transition at about 10K.

Propriétés physiques: comparaison avec les cuprates

Les composés au Nickel Ln-1111:

Condmat #0805.4340 Nickel-based layered superconductor, LaNiOAs

Takumi Watanabe^a, Hiroshi Yanagi^a, Yoichi Kamihara^b, Toshio Kamiya^{a,b}, Masahiro Hirano^{b,c}, and Hideo Hosono^{a,b,c,*}

Abstract

Rietveld analysis of the powder X-ray diffraction of a new layered oxyarsenide, LaNiOAs, which was synthesized by solid-state reactions, revealed that LaNiOAs belongs to the tetragonal ZrCuSiAs-type structure (*P4/nmm*) and is composed of alternating stacks of La-O and Ni-As layers. The electrical and magnetic measurements demonstrated that LaNiOAs exhibits a superconducting transition at 2.4 K, and above this, LaNiOAs shows metallic conduction and Pauli paramagnetism. The diamagnetic susceptibility measured at 1.8 K corresponded to ~20% of perfect diamagnetic susceptibility, substantiating that LaNiOAs is a bulk superconductor.

PHYSICAL REVIEW B 78, 060506(R) (2008)

Electron-phonon superconductivity in LaNiPO

Alaska Subedi

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114, USA

David J. Singh and Mao-Hua Du Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114, USA (Received 23 June 2008; published 20 August 2008)

We report first-principles calculations of the electronic structure, phonon dispersions, and electron-phonon coupling of LaNiPO. These calculations show that this material can be explained as a conventional electronphonon superconductor in contrast to the FeAs based high-temperature superconductors.

Supra expliqué par couplage e-phonon conventionnel
Les composés au Nickel Ba-122:

Density functional study of $BaNi_2As_2$: Electronic structure, phonons and

electron-phonon superconductivity

Condmat #0809.0499

Alaska Subedi

Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032, USA

David J. Singh

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032, USA (Dated: September 2, 2008)

We investigate the properties of BaNi₂As₂ using first principles calculations. The band structure has a similar shape to that of the BaFe₂As₂, and in particular shows a pseudogap between a manifold of six heavy d electron bands and four lighter d bands, i.e. at an electron count of six d electrons per Ni. However, unlike BaFe₂As₂, where the Fermi energy occurs at the bottom of the pseudogap, the two additional electrons per Ni in the Ni compound place the Fermi energy in the upper manifold. Thus BaNi₂As₂ has large Fermi surfaces very distinct from BaFe₂As₂. Results for the phonon spectrum and electron-phonon coupling are consistent with a classification of this material as a conventional phonon mediated superconductor although spin fluctuations and nearness to magnetism may be anticipated based on the value of $N(E_F)$.

Nickel-based phosphide superconductor with infinite-layer

structure, BaNi₂P₂

Takashi Mine¹, Hiroshi Yanagi¹, Toshio Kamiya^{1,2}, Yoichi Kamihara², Masahiro Hirano^{2,3}, and Hideo Hosono^{1,2,3,*}

Supra expliqué par couplage e-phonon conventionnel

T_c = 0.8 K Ronning et al. Condmat #0807.3788

Is LaFeAsO_{1-x} F_x an Electron-Phonon Superconductor?

L. Boeri,¹ O. V. Dolgov,¹ and A. A. Golubov²

¹Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany ²Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands (Received 18 March 2008; published 8 July 2008)

In this Letter, we calculate the electron-phonon coupling of the newly discovered superconductor LaFeAsO_{1-x}F_x using linear response. For pure LaFeAsO, the calculated electron-phonon coupling constant $\lambda = 0.21$ and logarithmic-averaged frequency $\omega_{ln} = 206$ K give a maximum T_c of 0.8 K, using the standard Migdal-Eliashberg theory. For the *F*-doped compounds, we predict even smaller coupling constants. To reproduce the experimental T_c , a 5–6 times larger coupling constant would be needed. Our results indicate that electron-phonon coupling is not sufficient to explain superconductivity in the whole family of Fe-As-based superconductors, probably due to the importance of strong-correlation effects.

Propriétés physiques fondamentales

(1) Faible densité de porteurs !

 $LaFeAsO_{1-x}F_x$: A low carrier density superconductor near itinerant magnetism

D.J. Singh and M.-H. Du

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114 (Dated: March 5, 2008)

The density functional electronic structure, phonons and magnetic properties of 26K superconducting LaFeAsO are reported. We find that this material is a low carrier density but high density of states near 2D ionic metal near itinerant magnetism. We find competing ferromagnetic and antiferromagnetic fluctuations. The balance between these is controlled by the doping level. This provides a new window into the interplay between magnetism and superconductivity.

Condmat 0803.0429

PHYSICAL REVIEW B 77, 174503 (2008)

g

Electronic correlations in the superconductor LaFeAsO_{0.89}F_{0.11} with low carrier density

Athena S. Sefat, Michael A. McGuire, Brian C. Sales, Rongying Jin, Jane Y. Howe, and David Mandrus Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA (Received 13 March 2008; revised manuscript received 3 April 2008; published 5 May 2008)

The crystal structure and numerous normal and superconducting state properties of layered tetragonal (P4/nmm) LaFeAsO, with F doping of $\approx 11\%$, are reported. Resistivity measurements give an onset transition temperature $T_c=28.2$ K, and low field magnetic susceptibility data indicate bulk superconductivity. In applied magnetic field, analysis of the resistive transition results in a critical field $H_{c2}\approx 30$ T and a coherence length $\xi_{GL}\approx 35$ Å. An upper limit for the electron carrier concentration of 1×10^{21} cm⁻³ is inferred from the Hall data just above T_c . Strong electron-electron correlations are suggested from temperature-dependent resistivity, Seebeck coefficient, and thermal conductivity data. Anomalies near T_c are observed in both Seebeck coefficient and thermal conductivity data.

≈10²¹cm⁻³

 $H_{c2} \approx 30 \text{ T}$ $\xi_{GI} \approx 35 \text{ Å}$

Structure électronique, Surface de Fermi LaFePO

S. Lebègue (Nancy) PRB 75 (2007)

FIG. 5. Calculated band structure of LaOFeP. The Fermi level is at zero energy and is marked by a horizontal dashed line.

5 bandes traversent le niveau de Fermi, donc:

Surface de Fermi composée de 5 contributions:

- 4 surfaces quasi cylindriques (caractère 2D de la structure) de direction k_z centrée sur les directions Γ -Z et X-R

 - 1 surface de sphère distordue centrée sur le point de haute symétrie Z

FIG. 6. (Color online) The Fermi surface of LaOFeP, shown in the first Brillouin zone centered around the Γ point.

Structure électronique, Surface de Fermi LaFeAsO_{1-x}F_x Iron-based layered superconductor I

Iron-based layered superconductor $LaO_{1-x}F_xFeAs$: an antiferromagnetic semimetal

Fengjie Ma¹ and Zhong-Yi Lu^{2*} ¹Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China and ²Department of Physics, Renmin University of China, Beijing 100872, China

DOS:

E<-2eV bandes formées par les liaisons entre les orbitales du La et O + celles des orbitales atomiques du Fe et As

-2eV<E<2eV orbitales du **3d** de Fe centrées sur le niveau de Fermi

(effet du champ cristallin beaucoup moins fort que dans les oxydes de métaux de transition [électronégativité de As << O])

FIG. 1: (Color online) Calculated atomic orbital-resolved partial density of states of $LaO_{1-x}F_xFeAs$ in nonmagnetic state. (a) parent compound LaOFeAs; (b) $LaO_{0.95}F_{0.05}FeAs$ (5% F-doping). The Fermi energy sets to zero.

Structure électronique, Surface de Fermi

Iron-based layered superconductor $LaO_{1-x}F_xFeAs$: an antiferromagnetic semimetal

Fengjie Ma¹ and Zhong-Yi Lu^{2*} ¹Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China and ²Department of Physics, Renmin University of China, Beijing 100872, China

degrés de spin non inclus

LaFeAsO_{1-x}F_x

FIG. 2: (Color online) Calculated nonmagnetic electronic structures of $LaO_{1-x}F_xFeAs$. (a) energy band structures: the solid lines for the undoping while the dotted lines for the 5% F-doping (the Fermi energy sets to zero); (b) undoping: Fermi surface; (c) 5% F-doping: Fermi surface.

SF composée de 5 contributions:

- 2 surfaces quasi cylindriques dues à deux bandes d'e⁻ (4,5) centrées autour de M-A

- 3 autres surfaces dues à trois bandes de trous (1,2,3) formées de 2 cylindres autour de Γ -Z et d'une poche 3D autour de Z

FIG. 3: (Color online) Calculated antiferromagnetic electronic structures of $LaO_{1-x}F_xFeAs$. (a) energy band structures: the solid lines for to the undoping while the dotted lines for 5% F-doping (the Fermi energy sets to zero); (b) undoping: Fermi surface; (c) 5% F-doping: Fermi surface. Note that here only the spin-up part is shown.

Structure électronique, Surface de Fermi: calculs analogues (DFT) LaFeAsO_{1-x}F_x

FIG. 5: Calculated phonon dispersions and phonon density of states of LaFeAsO.

 $LaFeAsO_{1-x}F_x$: A low carrier density superconductor near itinerant magnetism

D.J. Singh and M.-H. Du

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114 (Dated: March 5, 2008)

The density functional electronic structure, phonons and magnetic properties of 26K superconducting LaFeAsO are reported. We find that this material is a low carrier density but high density of states near 2D ionic metal near itinerant magnetism. We find competing ferromagnetic and antiferromagnetic fluctuations. The balance between these is controlled by the doping level. This provides a new window into the interplay between magnetism and superconductivity.

Surface de Fermi cylindriques séparés par un vecteur compatible avec la période de la structure magnétique conduisant à un scénario avec « nesting » pour l'origine du magnétisme (comme dans Cr).

Autres modèles pour rendre compte de la SF et du magnétisme: LaFeAsO_{1-x}F_x

Condmat #0803.3286

Model: 2 orbitals per site on a 2D square lattice. By adjusting the one-electron hopping parameters and the chemical potential, one can obtain a Fermi surface which has the same topology as found from the band structure calculations.

Minimal two-band model of the superconducting iron oxypnictides

S. Raghu,¹ Xiao-Liang Qi,¹ Chao-Xing Liu,^{2,1} D. J. Scalapino,³ and Shou-Cheng Zhang¹
¹Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA
²Center for Advanced Study, Tsinghua University, Beijing 100084, People's Republic of China
³Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
(Received 15 April 2008; revised manuscript received 8 May 2008; published 11 June 2008)

Following the discovery of the Fe-pnictide superconductors, local-density approximation (LDA) band structure calculations showed that the dominant contributions to the spectral weight near the Fermi energy came from the Fe 3d orbitals. The Fermi surface is characterized by two hole surfaces around the Γ point and two electron surfaces around the M point of the two Fe/cell Brillouin zone. Here, we describe a two-band model that reproduces the topology of the LDA Fermi surface and exhibits both ferromagnetic and $q=(\pi,0)$ spindensity wave fluctuations. We argue that this minimal model contains the essential low energy physics of these materials.

FIG. 4: Temperature dependence of (top) the electrical resistivity and (bottom) the magnetisation vs. temperature and the respective derivatives $\partial \chi / \partial T$ and $\partial \rho / \partial T$. $T_{\rm S}$ and $T_{\rm N}$ mark the structural phase transition at 156 K and the SDW-formation at 138 K.

Transition structurale dans le composé non supra LaFeAsO

Crystallographic Phase Transition and High- T_c

Superconductivity in LaOFeAs:F

Takatoshi Nomura¹, Sung Wng Kim², Yoichi Kamihara³, Masahiro Hirano³, Peter V. Sushko⁴, Kenichi Kato⁵, Masaki Takata⁵, Alexander L. Shluger⁴, and Hideo Hosono^{1,3,6}*

Origine? Mis-Match entre couches LaO & FeAs ? comme dans La_{2-x}Sr_xCuO₄?

nature

LaFeAsO_{1-x}F_x Diffraction de neutrons @ BT

LETTERS

Magnetic order close to superconductivity in the iron-based layered $LaO_{1-x}F_xFeAs$ systems

Clarina de la Cruz^{1,2}, Q. Huang³, J. W. Lynn³, Jiying Li^{3,4}, W. Ratcliff II³, J. L. Zarestky⁵, H. A. Mook², G. F. Chen⁶, J. L. Luo⁶, N. L. Wang⁶ & Pengcheng Dai^{1,2}

Composé mère LaFeAsO <u>non supra:</u> - distorsion structurale brutale à T=155 K tétragonale (P4/nmm) à monoclinique (P112/n) ou orthorhombique (Cmma) @BT

puis à 137 K, développe un ordre AFM à longue portée de type onde de densité de spins (SDW) avec un moment magnétique réduit à 0.4µB/Fe et une structure magnétique en « stripes » dans le plan (a,b) et doublée par rapport à la maille cristallographique suivant l'axe c

 structure magnétique confirmée par calculs théoriques (LDA) mais moment surestimé

PHYSICAL REVIEW B 78, 020503(R) (2008)

ç

Spin-density-wave anomaly at 140 K in the ternary iron arsenide $BaFe_2As_2$

Marianne Rotter, Marcus Tegel, and Dirk Johrendt*

Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus D, München 81377, Germany

Inga Schellenberg, Wilfried Hermes, and Rainer Pöttgen

Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, Münster 48149, Germany

(Received 26 May 2008; published 8 July 2008)

Transition magnétique ET transition cristallographique tétragonale (I4/mmm) \rightarrow orthorhombique (Fmmm)

Magnetic order in BaFe₂As₂, the parent compound of the FeAs based superconductors in a new structural family

BaFe₂As₂ Diffraction de neutrons @ BT

Q. Huang¹, Y. Qiu^{1,2}, Wei Bao³, J.W. Lynn¹, M.A. Green^{1,2}, Y.C. Gasparovic^{1,2}, T. Wu⁴, G. Wu⁴

& X. H. Chen⁴

Condmat #0806.2776

Résultats similaires dans SrFe2As2 (condmat #0807.1077)

Crystal structure of the new FeSe_{1-x}

superconductor

- S. Margadonna...
- E. Suard and K. Prassides Condmat #0807.4610

Fig. 1 (a) Schematic diagram of the low-temperature orthorhombic crystal structure of α -FeSe_{0.92}. Fe and Se ions are depicted as blue and yellow spheres, respectively. (b) and (c) Geometry of the FeSe₄ tetrahedra and the SeFe₄ pyramids with the three distinct Se-Fe-Se and Fe-Se-Fe bond angles indicated.

Incommensurate magnetic order in the Fe(Te_{1-x}Se_x) superconductor systems Wei Bao, ... Z.Q. Mao condmat #0809.2058

Onde de densité de spins incommensurable!

Figure 1 Crystal and magnetic structures of α -iron-chalcogen. a, The Fe(1) and Te/Se are fully occupied sites of the tetragonal PbO structure. The excessive Fe of Fe_{1+y}(Te_{1-x}Se_x) is located on the partially occupied Fe(2) site. Magnetic structures of b, α -FeTe and c, BaFe₂As₂ are shown in a Fe layer for comparison. The dashed lines denotes the Fe "square" sublattice. Each row of magnetic moments along the diagonal direction (the *b*-axis of the crystal structure) are identical in b. They modulate incommensurately with the lattice along the other diagonal (the *a*-axis), with both a linear sinusoid component pointing in the *b*-direction and a spiral component in the *ac*plane. In contrast, in the commensurate antiferromagnetic order of BaFe₂As₂, the row of identical magnetic moments line along one edge of the Fe square lattice (the *a*-axis of the orthorhombic unit cell) and alternate along the other edge (the *b*-axis)⁶.

Analogie avec les cuprates: ordre AFM et distorsion structurale supprimés par dopage

MAIS: dans les composés Fe-As, la phase AFM reste métallique alors que les cuprates celle-ci est isolante

Diagramme de phase

a) Expériences µSR

Figure 3. Electronic phase diagram of LaO_{1-x}F_xFeAs. (a) The doping dependence of the magnetic and superconducting transition temperatures determined from the μ SR experiments. Also shown are the tetragonal to orthorhombic structural transition temperatures T_S determined from resistivity measurements which show a king and subsequent strong reduction below T_S ^{10,26}. (b) The doping dependence of the low temperature saturation value of the magnetic order parameter (the spontaneous muon spin precession frequency fmuon (T \rightarrow 0)) and of the superfluid density n_s/m* measured via 1/ λ_{ab}^2 (T \rightarrow 0) in TF μ SR experiments. The grey data points at x=0.03 and x=0.08 are taken from Carlo et al ¹⁷

LaFeAs(O_{1-x}F_x) H. Luetkens et al. condmat0806.3533

The competition of magnetic order and superconductivity is a key element in the electronic phase diagram of all unconventional superconductors as e.g. the hightransition-temperature (high-T_c) cuprates ¹, heavy fermions ² and organic superconductors³. In these systems superconductivity is often found close to a quantum critical point where long-range antiferromagnetic order is gradually suppressed as a function of a control parameter, e.g. charge carrier doping or pressure. It is widely believed that dynamic spin fluctuations associated with this quantum critical behaviour are crucial for the mechanism of superconductivity. Recently high-temperature superconductivity has been discovered in ironpnictides providing a new class of unconventional superconductors^{4,5,6}. Similar as in the unconventional superconductors mentioned above superconductivity in the pnictides occurs in close proximity to a magnetic instability. Several experiments vield that the undoped compound LaOFeAs shows a metallic spin-density-wave (SDW) state with a small ordered moment below ~134 K^{7,8}. In contrast, highly sensitive muon spin relaxation (µSR) experiments on superconducting LaO1. xFxFeAs with optimally doped x~0.10 show the absence of static magnetic correlations⁹. In this Letter we determine the electronic phase diagram and, in particular, the exact nature of the change from the magnetically ordered to the superconducting state by means of µSR and Mössbauer spectroscopy on the series LaO1.-F_FeAs. Our experiments yield information on both, the doping dependence of the transition temperatures and the respective order parameters. In strong contrast to cuprates and heavy fermions we find a discontinuous first-order-like change of the Néel temperature, the superconducting transition temperature, the sublattice magnetisation and the superfluid density. While these results strongly question the relevance of quantum critical behaviour in iron pnictides they suggest an important role of the structural orthorhombic distortion disappearing exactly at the phase boundary between the magnetic SDW and the superconducting state.

Diagramme de phase

FIG. 1. (Color online) (a) The Fe spin ordering in the LaFeAsO chemical unit cell. (b) The Fe magnetic unit cell of LaFeAsO in the Fe-As plane. The Fe moments lie in the *a-b* plane along the *a* axis and form an antiferromagnetic collinear spin structure similar to BaFe₂As₂, SrFe₂As₂, and CaFe₂As₂ (Refs. 7–10) (c) The structural and magnetic phase diagram determined from our neutron measurements on LaFeAsO_{1-x}F_x with x=0,0.03,0.05,0.08. The red circles indicate the onset temperature of the P4/nmm to Cmma phase transition. The black squares designate the Néel temperatures of Fe as determined from neutron measurements in Fig. 3. The superconducting transition temperatures T_c for x=0.05,0.08 are determined from susceptibility measurements. The AFM to superconducting phase transition happens between x=0.03 and 0.05. The inset in (d) shows the F doping dependence of the Fe moment as determined from the intensity of the $(1,0,3)_M$ magnetic peak at 4 K.

LaFeAs(O_{1-x}F_x) Q. Huang et al. PRB 78, août 2008.

FIG. 4. (Color online) Low temperature structural evolution of LaFeAsO_{1-x}F_x as a function of F doping obtained from analysis of the BT-1 data. There is no sudden structural transition as the AFM order is replaced by the superconducting phase. The atomic positions of LaFeAsO_{1-x}F_x and their temperature dependence are shown in Tables I and II. (a) schematic defining the As-Fe-As block and illustrating the process of electron doping. (b) *a*, *b*, *c* lattice constants of the orthorhombic unit cell and the two Fe-Fe nearest-neighbor distances as a function of F doping. Similar to CeFeAsO_{1-x}F_x, F doping only suppresses the long axis of the orthorhombic structure. (c) La-O/F and La-As distances as a function of F doping. The slight increase in the La-O/F block size is compensated by a much larger reduction in the La-As distance, resulting in an overall *c*-axis lattice contraction as shown in (b). (d) Fe-As-Fe bond angles as defined in the inset versus F doping. While angle 1 hardly changes with doping, angles 2 and 3 decrease substantially with increasing F doping. (e) The Fe-As bond distance and As-Fe-As block size versus F doping. The Fe-As distance is independent of F doping.

Onde de densité de spins (SDW) et compétition avec l'ordre supra

Superconductivity at 41 K and its competition with spin-density-wave instability in layered $\text{CeO}_{1-x}F_x\text{FeAs}$

G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, Peoples Republic of China

Diagramme de phase

CeFeAsO_{1-x}**F**_x

J. Zhao et al. Nat.Mat. Dec 2008

Diffraction de neutrons

CeFeAsO_{1-x}F_x /Fe) 160 0.8 T = 40 KMoment ($\mu_{\rm B}$ *T*_N (Fe) T_N (Ce) Fe moment 120 $\triangleright T_{c}$ 0.04 Temperature (K) • T_s (P4/nmm to Cmma) Х 80 AFM 40 SC 0 0.04 0.08 0.12 0.16 0.20 0 Х 0.8µB/Fe à x=0

FIG. 4 (color). Electronic phase diagram for a SmFeAsO_{1-x}F_x system. T_s indicates the temperature of the anomaly peak in resistivity. T_0 and T'_0 represent the deviating temperature from a *T*-linear dependence of resistivity in low and high temperatures, respectively. The different color regions represent different *n* in the formula $\rho = a + bT^n$ shown in Fig. 2. The dotted line of x = 0.14 clearly shows a boundary for different behavior of *T*-dependent resistivity below and above x = 0.14, suggesting a QCP around $x \sim 0.14$. The superconductivity is abbreviated as SC.

Coexistence of the spin-density-wave and superconductivity in the $Ba_{1-x}K_xFe_2As_2$

H. Chen,¹ Y. Ren,² Y. Qiu,^{3, 4} Wei Bao,^{5, *} R. H. Liu,¹ G. Wu,¹ T. Wu,¹ Y. L. Xie,¹ X. F. Wang,¹ Q. Huang,³ and X. H. Chen^{1, †}

?

CHIN.PHYS.LETT.

La-1111

Mesure de C_p

Vol. 25, No. 6 (2008) 2221

Nodal Gap in Fe-Based Layered Superconductor $LaO_{0.9}F_{0.1-\delta}FeAs$ Probed by Specific Heat Measurements *

MU Gang(牟刚), ZHU Xi-Yu(祝熙宇), FANG Lei(方磊), SHAN Lei(单磊), REN Cong(任聪), WEN Hai-Hu(闻海虎)**

National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190

(Received 30 April 2008)

We report the specific heat measurements on the newly discovered Fe-based layered $LaO_{0.9}F_{0.1-\delta}FeAs$ superconductor with the onset transition temperature $T_c \approx 28 \text{ K}$. A nonlinear magnetic field dependence of the electronic specific heat coefficient $\gamma(H)$ has been found in the low temperature limit, which is consistent with the prediction for a nodal superconductor. The maximum gap value $\Delta_0 \approx 3.4 \pm 0.5 \text{ meV}$ is derived by analysing $\gamma(H)$ based on the d-wave model. We also detected the electronic specific heat difference between 9T and 0T in a wide temperature range, a specific heat anomaly can be clearly observed near T_c . The Debye temperature of our sample is determined to be about 315.7K. Our results suggest an unconventional mechanism for this new superconductor.

Fig. 3. Field dependence of the field-induced term $\gamma(H)$ at T = 0 K (symbols). The solid line is the fit to $\gamma(H) = A\sqrt{H}$.

nature

Vol 453 26 June 2008 doi:10.1038/nature07081

LETTERS

Sm-1111

A BCS-like gap in the superconductor SmFeAsO_{0.85}F_{0.15}

T. Y. Chen¹, Z. Tesanovic¹, R. H. Liu², X. H. Chen² & C. L. Chien¹

Since the discovery of superconductivity in the high-transitiontemperature (high-T_c) copper oxides two decades ago, it has been firmly established that the CuO2 plane is essential for superconductivity and gives rise to a host of other very unusual properties. A new family of superconductors with the general composition of LaFeAsO1-xFx has recently been discovered1-8 and the conspicuous lack of the CuO2 planes raises the tantalizing question of a different pairing mechanism in these oxypnictides. The superconducting gap (its magnitude, structure, and temperature dependence) is intimately related to pairing. Here we report the observation of a single gap in the superconductor SmFeAsO_{0.85} $F_{0.15}$ with $T_c = 42$ K as measured by Andreev spectroscopy. The gap value of $2\Delta = 13.34 \pm 0.3$ meV gives $2\Delta/k_BT_c = 3.68$ (where $k_{\rm B}$ is the Boltzmann constant), close to the Bardeen-Cooper-Schrieffer (BCS) prediction of 3.53. The gap decreases with temperature and vanishes at Tc in a manner consistent with the BCS prediction, but dramatically different from that of the pseudogap behaviour in the copper oxide superconductors. Our results clearly indicate a nodeless gap order parameter, which is nearly isotropic in size across different sections of the Fermi surface, and are not compatible with models involving antiferromagnetic fluctuations, strong correlations, the t-J model, and the like, originally designed for the high- T_c copper oxides.

- <u>Single</u> Gap « BCS-like » Δ = 6.6meV

- Paramètre d'ordre sans node, quasi isotrope en amplitude à travers les différentes sections de la surface de Fermi

Andreev spectroscopy

Nd-1111

ARPES

Momentum Dependence of the Superconducting Gap in NdFeAsO_{0.9}F_{0.1} Single Crystals Measured by Angle Resolved Photoemission Spectroscopy

Takeshi Kondo,¹ A. F. Santander-Syro,^{2,3} O. Copie,⁴ Chang Liu,¹ M. E. Tillman,¹ E. D. Mun,¹ J. Schmalian,¹ S. L. Bud'ko,¹ M. A. Tanatar,¹ P. C. Canfield,¹ and A. Kaminski¹

 ¹Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
²Laboratoire Photons Et Matière, UPR-5 CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris cedex 5, France
³Labratoire de Physique des Solides, UMR-8502 CNRS, Université Paris-Sud, Bâtiment 510, 91405 Orsay, France
⁴Unité Mixte de Physique CNRS/Thales, Route départementale 128, 91767 Palaiseau Cedex, France (Received 6 July 2008; published 2 October 2008)

We use angle resolved photoemission spectroscopy to study the momentum dependence of the superconducting gap in NdFeAsO_{0.9}F_{0.1} single crystals. We find that the Γ hole pocket is fully gapped below the superconducting transition temperature. The value of the superconducting gap is 15 ± 1.5 meV and its anisotropy around the hole pocket is smaller than 20% of this value—consistent with an isotropic or anisotropic *s*-wave symmetry of the order parameter. This is a significant departure from the situation in the cuprates, pointing to the possibility that the superconductivity in the iron arsenic based system arises from a different mechanism.

FIG. 2 (color online). The magnitude of the superconducting gap along the Γ hole pocket. (a) Raw- and (b) symmetrized-EDCs at the Fermi crossing momenta marked by green (or gray) dots in panel (c), where the definition of the ϕ angle is shown. (d) The value of the superconducting gap extracted from the data in panel (b) using the coherent peak position method. Peak positions are indicated by arrows.

La-1111

⁷⁵As NQR

Condmat #0810.1818

<u>Two-gaps feature</u> in LaFeAsO_{0.92} $F_{0.08}$ superconductor revealed by nuclear quadrupole resonance

S. Kawasaki¹, K. Shimada¹, G. F. Chen², J. L. Luo², N. L. Wang², and Guo-qing Zheng¹ ¹Department of Physics, Okayama University, Okayama 700-8530, Japan and ²Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China (Dated: October 10, 2008)

We report ⁷⁵As nuclear quadrupole resonance (NQR) studies on superconducting oxypnictide LaFeAsO_{0.92}F_{0.08} ($T_c = 23$ K). The temperature dependence of the spin lattice relaxation rate (1/ T_1) decreases below T_c without a coherence (Hebel-Slichter) peak and shows a temperature dependence that is not simple power-law nor exponential. We show that the result can be understood in terms of two superconducting gaps of either *d*- or $\pm s$ -wave symmetry, with the larger gap $\Delta_1 \sim 4k_BT_c$ and the smaller one $\Delta_2 \sim 1.5k_BT_c$. Our result suggests that the multiple-gaps feature is universal in the oxypnictides superconductors, which is probably associated with the multiple electronic bands structure in this new class of materials. We also find that $1/T_1T$ above T_c increases with decreasing temperature, which suggests weak magnetic fluctuations in the normal state.

FIG. 3: (color online) The temperature dependence of $^{75}(1/T_1)$ in LaFeAsO_{0.92}F_{0.08} measured at zero magnetic field. The solid curve is a two gap fit assuming a *d*-wave symmetry with parameters, $\Delta_1(0) = 4.2k_{\rm B}T_c$, $\Delta_2(0) = 1.6k_{\rm B}T_c$, and $\alpha = 0.6$ (see text). The dotted curve is a simulation assuming two *s*-wave gaps that change signs with parameters, $\Delta_1(0) = 3.75k_{\rm B}T_c$, $\Delta_2(0) = 1.5k_{\rm B}T_c$, and $\alpha = 0.38$ referred from literature.^{30,31} The solid arrow indicates T_c .

Gap supra, paramètre d'ordre supra ARPES Ba_{0.6}K_{0.4}Fe₂As₂ (Ba,K)-122:

Observation of Fermi-surface– dependent nodeless superconducting gaps

H. Ding et al. EPL 83, Juillet 2008

Fig. 4: (Colour on-line) Three-dimensional plot of the superconducting-gap size (Δ) measured at 15 K on the three observed FS sheets (shown at the bottom as an intensity plot) and their temperature evolutions (inset).

Abstract – We have performed a high-resolution angle-resolved photoelectron spectroscopy study on the newly discovered superconductor Ba_{0.6}K_{0.4}Fe₂As₂ ($T_c = 37$ K). We have observed two superconducting gaps with different values: a large gap ($\Delta \sim 12 \text{ meV}$) on the two small holelike and electron-like Fermi surface (FS) sheets, and a small gap ($\sim 6 \text{ meV}$) on the large hole-like FS. Both gaps, closing simultaneously at the bulk transition temperature (T_c), are nodeless and nearly isotropic around their respective FS sheets. The isotropic pairing interactions are strongly orbital dependent, as the ratio $2\Delta/k_{\rm B}T_c$ switches from weak to strong coupling on different bands. The same and surprisingly large superconducting gap due to strong pairing on the two small FSs, which are connected by the (π , 0) spin-density-wave vector in the parent compound, strongly suggests that the pairing mechanism originates from the inter-band interactions between these two nested FS sheets.

PRL 101, 057003 (2008)

PHYSICAL REVIEW LETTERS

week ending 1 AUGUST 2008

La-1111 Calculs DFT

Unconventional Superconductivity with a Sign Reversal in the Order Parameter of $LaFeAsO_{1-x}F_x$

I. I. Mazin,1 D. J. Singh,2 M. D. Johannes,1 and M. H. Du2

¹Code 6393, Naval Research Laboratory, Washington, D.C. 20375, USA ²Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114, USA (Received 18 March 2008; published 29 July 2008)

We argue that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound. This resulting state is an example of extended *s*-wave pairing with a sign reversal of the order parameter between different Fermi surface sheets. The main role of doping in this scenario is to lower the density of states and suppress the pair-breaking ferromagnetic fluctuations.

Paramètres d'ordre de signe opposé sur les poches de trous et d'électrons de la surface de Fermi

FIG. 2 (color online). Fermi surface formation upon backfolding of the large BZ corresponding to a simple Fe square lattice. (a) Real space: the four small unit cells of the Fe-only sublattice (dashed lines) with the larger solid diamond of actual two-Fe unit cell. Dark and light circles indicate superexchange (checkerboard) ordering. The inset shows the spin-density wave corresponding to \tilde{X} point SFs. (b) Reciprocal space: the dashed black square is the unfolded BZ, the solid blue diamond is the downfolded zone, and the blue ellipse is the electron pocket from the \tilde{Y} point downfolded onto the \tilde{X} point (which is *M* in the small BZ).

À l'Institut Néel @ Grenoble ?

Depuis avril 08: Elaboration et expériences sous haute pression

- Élaboration HP-HT + études structurales : P. Toulemonde et al. (Institut Néel)
- Etude du transport par résistivité sous HP : M. Nuñez-Regueiro et al. (Institut Néel)
- Etude structurale sous HP par XRD sur ID27 : G. Garbarino (ESRF)

Mais entre temps, déjà: mesure de T_c de LnOFeAs sous HP

Synthèses de poudres en presse belt à l'Institut Néel [avril 08] :

- A partir de mélange de: La (Sm), LaAs (SmAs), Fe, Fe₂O₃, FeAs, LnF₃, As
- Conditions: 3-6 GPa 1000-1400°C

en creuset de BN (hexagonal) : LaFeAs(O,F) (a = 4.01 Å, c=8.69Å) + LaAs, LaOF SmFeAs(O,F), SmFeAsO_{1-delta} + SmAs + FeAs

Polycristaux obtenus @ HP-HT

(non publié)

Etude structurale sous haute pression

ESRF Gaston Garbarino

Structural studies P<35GPa

VOIR POSTER de Gaston!

P=4GPa

Paramètres structuraux versus P : LAFeAs(O,F)

Etude du transport par résistivité sous haute pression (M. Nuñez-Regueiro)

Avec θ_D =316K, on obtient φ =2.75, compatible avec un <u>couplage e-ph</u>

VOIR POSTER de Gaston!

FeSe_{0.82} (P.Lejay) sous HP

Conclusion

Paramètres structuraux contrôlant la supra:

- régularité du tétraèdre FeAs₄
- distance entre blocs FeAs supra
- distance Fe-As intra-bloc supra optimale

Similarités & différences avec les cuprates à haute T_c :

- Composé mère non dopé: ordonné **AFM**: **métallique** avec cependant **faible conductivité** (Fe-As) // isolant (cuprates)

- ordre AFM colinéaire dans les 2 cas (doublement de la maille)
- moment magnétique sur-estimé par calculs: 0.5 à 1.5 celui des cuprates
- avec le dopage, T(AFM) diminue et s'annule près de la transition supra
- avec le dopage, T_s (transition structurale) diminue aussi
- T_c max lorsque T_s = 0 K dans LnFeAs($O_{1-x}F_x$) avec Ln = La, Ce
- diagramme de phase similaire à celui du cuprate La_{2-x}Sr_xCuO₄
- symétrie de l'ordre supra?
 - certains: node dans les excitations des quasiparticules @ LT suggérant une symétrie « d-wave », comme dans les cuprates
 - d'autres: « full gap », suggérant une symétrie plus + conventionnelle « s-wave »
 - ou encore symétrie « s-wave » non conventionnnelle, i.e. avec un paramètre d'ordre changeant de signe d'une surface de Fermi à une autre

Perspectives (nombreuses!):

- Nouvelles compositions/empilements

- <u>Applications</u> (fort H_{c2} , plus faible anisotropie que les cuprates): déjà des papiers sur **filaments** produits par PIT « Powder In Tube »

- films existent déjà!

-Questions ouvertes:

- le gap avec/sans nodes?
- mécanisme d'appariement des paires de Cooper?
- rôle des fluctuations de spins
- effet de la substitution Cobalt/Fer: pourquoi ne détruit-elle pas la supra?

- ...

Donc encore **beaucoup de travail** pour comprendre ces nouveaux supraconducteurs prometteurs... et les cuprates!

condmat #0808.1985

Condmat #0806.2751

Large Seebeck coefficients in Iron-oxypnictides : a new route towards n-type thermoelectric materials

Loreynne Pinsard-Gaudart¹, David Berardan¹, Julien Bobroff², Nita Dragoe^{*,1}

¹ Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Bât. 410, Univ. Paris-Sud 11, F-91405 Orsay, France.
² Laboratoire de Physique des Solides (UMR 8502), Bât. 510, Univ. Paris-Sud 11, F-91405 Orsay, France.

Figure 2 Temperature dependence of a) the Seebeck coefficient and b) thermoelectric power factor of some REFeAsO_{1-x} F_x compounds. The dashed-dotted lines correspond to the data of Bi₈₈Sb₁₂ reported in ref 9.