

Phonon Density of States in NdFeAsO $_{1-x}F_x$

<u>Mathieu Le Tacon</u>, Michael Krisch and Alexei Bosak Beamline ID28 "Inelastic X-ray Scattering II" - ESRF

Jan-Willem Bos and Serena Margadonna University of Edinburgh

Lattice dynamics Investigations

Lattice dynamics Investigations

Why is it interesting ??

Contains many informations e.g.

- interatomic forces & elastic properties
- thermodynamics (thermal expansion, heat capacity, melting)
- electron phonon-coupling (superconductors, CDW systems)

Measuring the phonons

Measuring the phonons

Probing dispersive excitations with inelastic scattering

Transferred momentum Q needs at least to cover the entire BZ for the energy ranges of interest

Ideal probe: neutrons Ex: thermal neutrons $E \approx 25 \ meV$ $k = \sqrt{2EM / \hbar^2} \approx 10^{12} \ m^{-1}$

The Triple Axis Neutron Spectrometer (B.N. Brockhouse 1957, cf S. Petit's talk)

BUT intrinsic limitations: - Weak cross section (Big Samples !) - Strong coupling btw momentum energy

Probing dispersive excitations with inelastic scattering

Inverse problem :

Need to use keV photons to have similar momentum than neutrons Need for very high resolution power: e.g. $\Delta E = 1.5 \text{meV} \otimes E = 21.7 \text{ keV}$

 $\frac{\Delta E}{E} \approx 10^{-8}$

Possibility to explore collective dynamics in:

- crystalline materials, even for very small crystals/quantities

- disordered systems in which acoustic excitations have to be measured at low Q

Beamline ID28 at ESRF

Beamline ID28 at ESRF

GDR MICO - 03/12/2008 Autrans

Iron based oxy-pnictides RE O Fe (As, P, N) [RE = La, Nd, Sm, Ce ...]

Kamihara, Y., et al. <u>J. Am. Chem. Soc.</u> **130** 3296 (2008). Takahashi, H., et al. <u>Nature</u> **453** 376 (2008)..

Striking similarities with cuprates:

- Layered compounds
- Doping induce high-T_c superconductivity (T_c max \sim 55K)
- Strong electronic correlations
- proximity of SC and magnetic phases

Lattice dynamics in cuprates

Lattice dynamics in oxy-pnictides Are these compounds conventional e-ph superconductors? Density Functional perturbation theory $\alpha^2 F(\omega)$ DOS _a 500 400 ω (cm⁻¹) 300 200 100 ΓΖ 0.2 Х A 0 0.2 Μ R L. Boeri, et al. Phys. Rev. Lett. 101, 026403 (2008) Electron-phonon interaction cannot explain $T_c > 0.8$ K

$NdFeAs(O_{1-x}F_x)$ Sample characterization

Q-sampling on NdFeAsO: 36 spectra between 53 nm⁻¹ to 73 nm⁻¹

- Elastic line suppression
- Bose factor
- Multiphonon contribution

M. Le Tacon, et al. PRB 78, R140505 (2008)

Q-sampling on NdFeAsO: 36 spectra between 53 nm⁻¹ to 73 nm⁻¹

Q-sampling on NdFeAsO: 36 spectra between 53 nm⁻¹ to 73 nm⁻¹

Q-sampling on NdFeAsO: 36 spectra between 53 nm⁻¹ to 73 nm⁻¹

GDR MICO - 03/12/2008 Autrans

Effect of doping on Raman Spectra

- Hardening of the $Fe(B_{1g})$ & As (A_{1g}) branches

- Small softening of the $Nd(A_{1q})$ branch

Le Tacon et al., PRB 78, R140505 (2008) Gallais et al., PRB 78 132509 (2008)

Effect of doping on Raman Spectra

Any clue from other techniques ??

Any clue from other techniques ??

Nuclear Resonant Inelastic Scattering (Higashitanigushi, PRB 78, 174507 (2008))

T- dependence and relation to superconductivity?

Conclusions

- Good agreement with simple LDA calculations: strong correlations ??

- Lattice dynamics in iron-based oxypnictides is probably not as boring as first expected ...

- Role of the rare earth?

- Investigations in single crystals are now in progress ...