Critical fields in Nd(O,F)FeAs [and (K,Ba)Fe₂As₂] single crystals a Hall probe magnetization and specific heat study

T.Klein Institut Néel, CNRS, Grenoble, France Institut Universitaire de France and UJF, Grenoble, France

> C.Marcenat CEA, Institut Nanosciences et Cryogénie, SPSMS-LATEQS, Grenoble, France

Z.Pribulova J.Kacmarcik Centre of Low Temperature Physics, IEP SAS & FS Kosice, Slovakia

S. L. Bud'ko, M. Tillman and P. C. Canfield Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames

M.Konczykowski and K.van der Beck Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau, France

Why should we bother about iron oxypnictides ?

 $\begin{array}{l} High \ T_c \ values \\ from \sim 26K \ in \ La(O,F)FeAs \\ to \sim 54K \ in \ Gd(O,F)FeAs \\ so \ called \ 1111 \ phase \\ Kamihara \ et \ al., \ Takahashi \ et \ al. \end{array}$

and 36K in (Ba,K)Fe₂As₂ so called 122 phase Rotter et al.

or $Li_{1-y}FeAs$ [111 phase] : $T_c \sim 18K$ Tapp et al.

or $Fe_{1+\epsilon}(Se_xTe_{1-x})$ [11 phase] : T_c up to 15K at ambient pressure (and even 27K at 1.5GPa) Hsu et al.

electron and Hole pockets

as recently observed in MgB_2

Multigap superconductivity

ARPES (Ding et al.) measurements on (K,Ba)Fe₂As₂ $\Delta \sim 6 \text{ meV} (2\Delta = 3.7 \text{kT}_c \sim \text{BCS})$: large hole pocket to 12 meV (2 Δ =7.5kT_c ~ Cuprates) : small hole and electron pockets in agreement with point contact (Szabo et al.) Δ_L : 9-11 meV - Δ_S : 2-5 meV

but calculations (Boeri et al.) led to a small electron-phonon coupling constant $\lambda \sim 0.2$ (as compared to ~ 1 in MgB₂)

225

270°

Undoped sample : magnetic instability (SDW/AFM) associated with orthorhombic-tetragonal transition

possible but...

Cuprates : Mott insulator (large Coulomb repulsion, *U*)

AF : lowering of the spin energy

Cu : at sites with strong planar coordination

 $LaOFeAs: \underbrace{LaOFeAs}_{0 \text{ geg}} = \underbrace{LaOFAs}_{0 \text{ geg}$

AF "instability" of the Fermi surface (Q= $(\pi/a,\pi/a,0)$ nesting) [or exchange (via As ions)] -> Spin Density Wave

Tetrahedral coordination of Fe atoms

Mazin et al. : unconventional mechanism mediated by spin fluctuations, s-wave with sign reversal between different sheets of the FS

AC specific heat measurements : thermodynamic determination of H_{c2}

- High sensitivity 1/1000but relative variations only (unknown P)
- Well adapted to small samples : 500ng to 500µg
- Continuous T (or H) sweeps
- No arbitrary background (phonon) substraction

Very small shift i.e. very high H_{c2} value

Rapid collapse for $H \ll H_{c2}(0)$ similar to what observed in cuprates Strong fluctuation effects ?

5

 ~ 2.5

39

28

16000

600 (± 300)

10-6

3 (± 3) 10⁻⁴

 MgB_2

(K,Ba)Fe₂As₂

50

130 (± 20)

10

 $2(\pm 0.5)$

Small superfluid density unconventional coupling ? (K,Ba)Fe₂As₂ ≠ Nd(F,O)FeAs ?

Saturation of H_{c1} at low T in (Nd(F,O)FeAs) : fully open gap

Very high H_{c2} values (K,Ba)Fe₂As₂ > Nd(Fe,O)FeAs Pauli, orbital ?

Possible existence of a vortex liquid phase in Nd(F,O)FeAs (but probably not in (K,Ba)Fe₂As₂)

Small anisotropy Temperature independent Γ_{λ} value ~ 4 in Nd(F,O)FeAs is $\Gamma_{Hc1}(T) = \Gamma_{Hc2}(T)$?