MULTIGAP SUPERCONDUCTIVITY IN HEAVY FERMION SYSTEMS

G. Seyfarth[#], <u>J. P. Brison</u>, M.-A. Méasson*, D. Braithwaite, J. Flouquet, G. Lapertot and D. Aoki

CEA-Grenoble (SPSMS) and Institut-Néel (CNRS-Grenoble) [#] now University California Irvine * now MPQ-CNRS, Université Paris 7

Supported by ANR-ICENET

sms

1

Jean-Pascal Brison - Direction des Sciences de la Matière

OUTLINE

- Introduction :
 - why multigap superconductivity in heavy fermion systems ?
 - Fermi Surface of CeCoIn₅ and PrOs₄Sb₁₂
- Results on $PrOs_4Sb_{12}$
 - low field scale from $\kappa(H)$
 - small gap estimate from $\kappa(T)$
 - consistent set of λ_{ii} to explain and $H_{c2}(T)$ and $\kappa(H,T)$
- Results on CeCoIn₅
 - low temperature behavior of $\kappa(T)$:
 - unpaired electrons/small gap?
 - low field scale from $\kappa(H)$
- Summary

C

INTRODUCTION: heavy fermion superconductors

- -CeCu₂Si₂ (1979), UBe₁₃ (1983), UPt₃ (1984), CeCoIn₅ (2002), URhGe (2001)..
- -3D anisotropic (tetragonal, cubic, hexagonal)
- -f electrons=> hard core + close to AF instability
- -heavy quasiparticles (f electrons) build Cooper pairs
- -"p,d,f wave"

ANOSCIENCES

ET CRYOGÉNIE

æ

INTRODUCTION: MgB₂ paradigm of multigap superconductors

sms

IANOSCIENCES

ET CRYOGÉNIE

4 C

INTRODUCTION: the two systems

•filled skutterudite, RT_4X_{12} , cubic Im3, T_h symmetry

• Γ_1 non magnetic ground state, low lying Γ_4 triplet

•Heavy fermion Superconductor: $T_c \sim 1.7 K$

Bauer et al., PRB, 65, 100506(R) (2002)

- Tetragonal crystal structure
- Space group P4/mmm
- Heavy fermion superconductor: $T_c \sim 2.3 K$

Petrovic et al, JP: Cond Matter 13 L337 (2001)

INTRODUCTION: Fermi surface of CeCoIn₅

psms

INSTITUT NANOSCIENCES

ET CRYOGÉNIE

6

œ

INTRODUCTION: why MBSC in Heavy Fermion Superconductors ?

• BCS simple gap:
$$T_c \approx \theta_D \exp\left(-\frac{1}{\lambda - \mu^*}\right)$$
, with $\lambda = -N(0)V > 0$

- Multigap: set of coupling constants
 - different density of states ?
 - different pairing strength ?

both true for the "heavy fermions"

$$\lambda_{ij} \approx V_{ij} N_j$$

density of states of band j

— symmetric interaction matrix between bands i & j

Yields:

- different gap values / FS sheets (depends only on λ_{ii}): Δ_i
- different field scales

depends on $\lambda_{ij} \& \mathbf{v}_{Fi}$.

$$\mathbf{F}_{L} = e\mathbf{v}_{F} \times \mathbf{B}, \quad \text{or } H_{orb} = \frac{1}{2m^{*}}(\mathbf{p} - e\mathbf{A})^{2}$$
$$H_{c2}^{i} \approx \frac{\Phi_{0}}{2\pi \xi_{0}^{i^{2}}}, \text{ with } \xi_{0}^{i} \approx \frac{\hbar v_{Fi}}{\Delta_{i}}$$

strong effect for heavy fermion systems

Œ

PrOs₄Sb₁₂: "other" open questions

Role of quadrupolar fluctuations:

NOSCIENCES

FT CRYOGÉNI

•mass enhancement ?(Goremychkin et al., PRL 93 157003 (2004))?

• for pairing mechanism (but $LaOs_4Sb_{12}...$)?

Unconventional Superconducting state ? (->T. Sakakibara & Y. Aoki et al., JPSJ 76 051006-2007)

MACROSCOPIC PROBE: thermal conductivity

$$j_{e} = \frac{1}{dV} \sum_{i} ev_{i} = e\rho\overline{v} = -\sigma\nabla V$$

$$j_{q} = \frac{1}{dV} \sum_{i} (\varepsilon_{i} - \mu)v_{i} = -\kappa\nabla T$$

$$\kappa = \frac{1}{3}c$$

$$\kappa = \frac{1}{3}c_{v}\overline{v}l$$

In metals, Wiedemann-Franz law: $\kappa_e/T = L_0 \sigma$ (charge and thermal transport are equivalent)

Two fluid model

- condensate of Cooper pairs with no entropy, short circuiting σ , no contribution to κ
- thermal conductivity: needs heat carriers : thermal excitations carrying entropy and heat
- $\Rightarrow \kappa(T)$ measures the number of thermal excitations
- Sensitive also to "the non f-bands"
- $\kappa(T)$ probes the gaps
- κ (H) probes the field scale

Violated for superconductors:

- $-\sigma$ is infinite for T<Tc
- $-\kappa_{\rm e}/T$ goes to zero as T goes to zero

THERMAL CONDUCTIVITY: a directional probe

Heat carried by thermal excitations =>

- at low T/T_c , probes gap close to the nodes
- excitations with \mathbf{k} // $\mathbf{J}_{\mathbf{0}}$
- no local (hyperfine...) contributions

Sensitive to scattering time (τ) :

- resonant scattering close to the unitary limit ($\delta \sim \pi/2$) (Pethick and Pines 86)

PrOs₄Sb₁₂: sample characterization

Thermal conductivity measurements on two different samples:

$$\frac{\rho(T_c)}{\rho(300K)} \approx 30$$

sms

NOSCIENCES

ET CRYOGÉNIE

$$\frac{\rho(T_c)}{\rho(300K)} \approx 15$$

Jean-Pascal Brison - Direction des Sciences de la Matière

(e)

11

к/**Т (µW/K².cm)**

PrOs₄Sb₁₂: samples behavior at low T

$PrOs_4Sb_{12}$: Temperature dependence of $\kappa(T)$

MAGNETIC FIELD EFFECTS: Vortices

In the mixed state, for type II superconductors, B penetrates as flux lines...

Diameter of the flux "tubes" $\sim \lambda$ (created by supercurrents: vortices)

The superconducting state is destroyed in the vortex cores, of size ~ $\xi \ll \lambda$

MAGNETIC FIELD EFFECTS: conventional superconductors

Magnetic field on type II superconductors:

- induce a mixed phase (vortices)
- new scattering mechanism

ET CRYOGÉNII

- recovery of normal state behaviour for B
- at low T, low field : no effect

 B_{c2}

œ

MAGNETIC FIELD EFFECT: the « Volovik effect »!

- to create vortices -> supercurrents in the bulk, for $B_{c1} < B < B_{c2}$.
 - Doppler shift of excitation spectrum $(\mathbf{k}, \mathbf{v}_{\mathbf{S}})$
 - if unconventional, with nodes of the gap => for T=0, \sqrt{B} dependence of $\rho_d(0), C_p...$
- At T \neq 0, for $\sqrt{(B/B_{c2})}$ <<1 and (T/T_c)<<1:

PrOs₄Sb₁₂: Field sweeps at T->0

IANOSCIENCES SPSMS

ET CRYOGÉNIE

- "Normal metal" behavior below 0.07K at $H_{c2}/100$
- Very fast, robust increase of $\kappa(H,T\sim0)$

(e)

$PrOs_4Sb_{12}$: Field sweeps at T->0

PrOs₄Sb₁₂: Comparison with H_{c2}

Fitting the two gaps (factor 3) and H_{c2} requires :

 $\lambda_{21} = 0.2 \lambda_{11} \& \lambda_{12} = \lambda_{22} = 0.07 \lambda_{11}$ meaning at least $V_{21} \sim 0.2 V_{11}$

PrOs₄Sb₁₂: Summary

- Multigap superconductivity: confirmed on single transition samples, confirmed on H_{c2} , $\kappa(H)$ and $\kappa(T)$.
- From H_{c2} , $\kappa(H)$, small gap associated with band of light mass
- From $\kappa(T)$, difference in λ_{ii} from density of states and coupling strength !

CeCoIn₅: Overview

- Close to a QCP (Poster L. Howald)
- complex phase diagram in field
- •(FFLO & AF order ?)

IANOSCIENCES

ET CRYOGÉNIE

• d_{x2-v2} order parameter ?

Neutrons : Kenzelmann et al., Science 321(2008)1652

NMR : V. Mitrovic, C. Berthier, M. Horvatic et al., to be published

0

1.2

0

(2008) 114704

œ

CeCoIn₅: Sample Quality

ET CRYOGÉNI

- Sharp superconducting transition in specific heat ($\Delta T_c \sim 70 \text{mK}$ @ 2.3K)
- Correspondence between κ and C_p
- T_c from $\rho \sim 10\%$ higher: usual in 115 family. (up to 9 in Los Alamos samples)

CeCoIn₅ : Overview of literature results

(e)

CeCoIn₅: Inelastic collisions

At T_c: very large contribution of inelastic scattering (QCP) At 6T, $\rho(2.3K)/\rho_0 \sim 16$

Below T_c, fast suppression of inelastic scattering (Kasahara et al. PRB 72 214515

(2005)): for H=0, $(\kappa/T)_{max} / (\kappa/T(T_c)) \sim 16$, with maximum at ~0.4K

Consequence (?) : At 10mK ($T/T_c = 4.10^{-3}$), $\kappa/T(10mK) > \kappa/T(T_c)$

CeCoIn₅: Thermal excitations at low temperatures

In CeCoIn₅, inelastic scattering negligible below 0.1K~0.043T_c then $\kappa(T)/T \sim 0.5 \kappa_n(T)/T (T->0)$ at 10mK (T/T_c~4.10⁻³) $\kappa(T)/T \sim 7.10^{-2} \kappa_n(T)/T (T->0)$ In UPt₃, at T/T_c~ 4.10⁻², $\kappa(T)/T \sim 10^{-2} \kappa_n(T)/T (T->0)$

= need *nodes* AND a *small gap* to explain the large $\kappa(T)$ in CeCoIn₅

CeCoIn₅: Extreme multigap: unpaired electrons ?

Proposal of Tanatar et al., PRL 95 067002 (2005)

- Present data: no need for unpaired electrons down to 10mK
- κ/T may extrapolate to any value below 3 mW/K².cm
- Compatible with a « universal limit »

INSTITUT NANOSCIENCES SPSS

26 CE

CeCoIn₅: Field effects - H_{c2}

Bianchi et al., PRL 91, 187004 (2003)

CeCoIn₅: low fields effects

sms

ET CRYOGÉNII

As in $PrOs_4Sb_{12}$, fast recovery of "normal state behavior": T \rightarrow 0, $\kappa/T(B=8mT\sim0.0015 B_{c2})\sim0.4 \kappa_n/T(B=6T)$

28 CE

Summary

Both in CeCoIn₅ and PrOs₄Sb₁₂:

 $\kappa(T)$ at low T: reveals a small gap ($\Delta_{s} << 1.76 k_{B} T_{c}$), but no unpaired electrons

 $\kappa(H,T->0)$: reveals very small additional characteristic field, of order or lower than H_{c1}

Confirms the idea: multigap connected with f-character pairing mechanism related to f-electrons.

For CeCoIn₅, other MBSC supports:

• T&H dependent magnetic anisotropy Xiao et al. PRB 73 184511 (2006)

- Point Contact Spectroscopy Rourke et al. PRL 94 107005 (2005)
- but not in Park et al. PRB 72 052509 (2005)

Also found in URu₂Si₂ Kasahara et al., PRL 99 116402 (2007)

Jean-Pascal Brison - Direction des Sciences de la Matière

Wiedemann Franz law

sms

ANOSCIENCES

ET CRYOGÉNIE

Indeed a very wide range of inelastic scattering : L/L_0 down to 0.65 ! Below 0.1K (T/Tc=0.043), inelastic scattering should be negligible

 $L = \frac{\kappa}{\sigma T}$

CEC

30

Jean-Pascal Brison - Direction des Sciences de la Matière

Quantum Critical Point

Johnpierre Paglione, M. A. Tanatar, D.G. Hawthorn, Etienne Boaknin, R.W. Hill, F. Ronning, M. Sutherland, Louis Taillefer, C. Petrovic and P. C. Canfield PRL **91** 246405 (2003) Violation of a universal law at a quantum critical point

œ

31

M.A. Tanatar, Johnpierre Paglione, Louis Taillefer and C. Petrovic Nature ?...

S

NANOSCIENCES

ET CRYOGÉNIE

Jean-Pascal Brison - Direction des Sciences de la Matière

CeCoIn₅: Field scans

Field scans @ 50/25mK with H // c and j // a:

- Recover the known complex behavior (K. Izawa et al. PRL 87 057002 (2001))
- Small gap "suppressed" as soon as H>H_{c1} $H_{c2}^{S} \le H_{c1} \sim 0.0015 H_{c2}$

CeCoIn₅: anisotropy of the field sweep

ET CRYOGÉNII

• Confirm strong κ enhancement at extremely small magnetic fields, weather H // a or H // c $H_{c2}^{s} \leq H_{c1} \sim 0.0015 H_{c2}$

• Initial "jump" of κ (T->0, H), with immediate saturation of DOS effect (meaning $H^{S}_{c2} << H_{c1}$), then a decrease due to τ (H).

INTRODUCTION: f character of the Fermi sheets

T. Maehira, T. Hotta, K. Ueda, and A. Hasegawa (JPSJ **72** 854 (2003)) & private communication

H. Harima in J. Phys. Cond Matter **13** L627 (2001)

œ

INTRODUCTION: Fermi surface of PrOs₄Sb₁₂

H. Harima in Y. Aoki et al. JPSJ **76** 051006-2007

