Oscillations quantiques et surface de Fermi des supraconducteurs à haute température critique

Baptiste Vignolle

Laboratoire National des Champs Magnétiques Pulsés

Toulouse, France

GDR Mico, Autrans 03/12/08

Collaborations

C. Proust

C. Jaudet

D. Vignolles

J. Levallois

A. Audouard

M. Nardone

SHERBROOKE	UBC
L. Taillefer	
N. Doiron-Leyraud	D. Bonn
D. LeBœuf	R. Liang
J-B Bonnemaison	W. Hardy

UNIVERSITÉ DE

N. Hussey

T. Carrington

J.D. Fletcher

A.F. Bangura

University of St Andrews

A.P. Mackenzie

1 – Introduction à la physique des cuprates

3 – Oscillations quantiques : rappel

Electrons dans un champ magnétique : quantification de Landau en 3D

Resisitivité: Shubnikov-de Haas (SdH)

Rappel OQ 1930 Bi

3 – Oscillations quantiques : rappel

Description dans la théorie standard d'un métal

- Conséquence directe da la quantification d'orbites fermées
- Mesure directe de l'aire de la Surface de Fermi (Nombre d'orbites ? Position dans l'espace réciproque ?)

Sonde <u>tout le</u> <u>volume</u> du matériau

$$\frac{\text{Théorie Lifshits-Kosevich}}{B} \qquad \Delta R, \Delta \tau \propto R_T R_D \cos \left[2\pi \left(\frac{F}{B} - \gamma \right) \right]$$

$$\frac{F}{B} = \frac{\hbar}{2\pi q} \frac{A_F}{B} \qquad \text{Relation d'Onsager} \Rightarrow A_F \qquad \text{Aire extrêmale}$$

$$R_T = \frac{X}{sh(X)} \quad \text{where } X = 14.694 \times Tm_c / B \Rightarrow m_c \qquad \text{Masse cyclotron}$$

$$R_D = \exp \left(-\frac{14.694 \times T_D m_c}{B} \right) \Rightarrow T_D = \frac{\hbar}{2\pi k_B \tau} \qquad \text{Température de Dingle}$$

4 – Oscillations quantiques dans un cuprate sur dopé : Tl₂Ba₂CuO_{6+δ}

4 – Oscillations quantiques dans un cuprate sur dopé : Tl₂Ba₂CuO_{6+δ}

 \Rightarrow Densité de porteurs : n=1.3 porteur / atome de Cu (n=1+p avec p=0.3)

- $m^*=4.1 \pm 1 m_e > m_{bande} = 1.2 m_e$
- Chaleur spécifique électronique : $\gamma_{el} = \frac{\pi N_A k_B^2 a^2}{3\hbar^2} m^* \implies \gamma_{el} = 6 \pm 1 \, mJ/mol.K^2$

Pour TI2201 polycristallin surdopé: $\gamma_{el} = 7 \pm 2 \text{ mJ/mol.} \text{K}^2$

(Loram et al, Physica C'94)

Résumé

Quasiparticules cohérentes sur toute la surface de Fermi (région anti-nodales)

1) Fréquence (Aire SF mesurée) en très bon accord avec calcul structure de bande

2) Densité de porteurs n = 1.3 = 1 + p (p est le dopage)

3) γ_{el} extrait de m^{*} en excellent accord avec mesures champ nul

4) *l* (extrait de l'analyse Dingle) en accord avec transport en champ nul

Très bon accord entre OQ, ARPES, ADMR, effet Hall, transport à champ nul , chaleur spécifique

Les propriétés électroniques à champ nul et sous champ intense (60 T) sont les mêmes

5 – Oscillations quantiques dans les cuprates sous dopés :

Effet Shubnikov - de Haas

Frequency : F = (660 ± 30) T Mass : m* = (2.7 ± 0.3) m₀ A_k = 2.4 % de la PZB

5 – Oscillations quantiques dans les cuprates sous dopés :

Effet de Haas – van Alphen

Données en accord avec la théorie de Lifshits-Kosevich

Confirmation de l'existence SF fermée et cohérente pour les cuprates sous dopés

5 – Oscillations quantiques dans les cuprates :

Résumé

Sur-dopé	
$TI_2Ba_2CuO_{6+\delta}$ (p = 0.3)	
$A_k = 173 \text{ nm}^{-2} \sim 65 \%$ de la PZB	

Sous-dopé

$$YBa_2Cu_3O_{6.5} (p = 0.1)$$

 $A_k = 5.1 nm^{-2} = 1.9 \% de la PZB$
 $YBa_2Cu_4O_8 (p = 0.14)$
 $A_k = 6.3 nm^{-2} = 2.4 \% de la PZB$

6 – Exploitation des mesures (côté sous-dopé) :

Différents scénarios possibles :

de la surface de Fermi

Différents scénarios possibles : isolant de Mott dopé

4 poches (nodales) de trou

- e.g. isolant de Mott dopé - Liquide de spin RVB -(C)DMFT-2D
- Staggered flux phase

ARPES (Na-CCOC)

K. Shen *et al.*, Science (2005)

S. Julian and M. Norman, Nature'07

Mais • Théorème de Luttinger pour SF 2D :
$$n = \frac{2A_k}{(2\pi)^2} = \frac{F}{\phi_0}$$

 $YBa_2Cu_3O_{6.5} \qquad F = 530 T \implies n = 0.15 \text{ porteurs par atome de Cu!!! (0.1)}$

YBa₂Cu₄O₈ $F = 660 T \implies n = 0.19$ porteurs par atome de Cu!!! (0.14)

• Effet Hall négatif (type électron)

6 – Exploitation des mesures (côté sous-dopé) :

Effet Hall

Réponse de type électron à basse température !

6 – Exploitation des mesures (côté sous-dopé) :

Différents scénarios possibles : ordres en compétition

6 – Exploitation des mesures :

Différents scénarios possibles : ordres en compétition

e.g. poches de trou et d'électrons

7 – Conclusion :

