The Optical Conductivity and the electron-boson spectral functions in cuprates

Ricardo Lobo

Laboratoire Photons et Matière - CNRS École Supérieure de Physique et Chimie Industrielles de la Ville de Paris

Collaborators

- D. Colson A. Forget
- R. L. Greene
- T. Timusk J. Carbotte J. Yang J. Hwang
- E. Schachinger
- C. C. Homes
- A. Zimmers

CEA, Saclay

University of Maryland

McMaster University

Graz University of Technology

Brookhaven National Laboratory

ESPCI

✓Phase diagram

✓ The problem of the superconducting glue

- ✓ The electron-boson effective interaction
- ✓ Electron doped (Pr,Ce)₂CuO₄
- ✓ Hole doped Hg-1201
- ✓Optics and Neutrons

The phase diagram of cuprates

Hole concentration

Which glue keeps the pairs together?

From BCS to Eliashberg Theory

a²F(w) electron-boson spectral density (effective interaction)

BCS theory

$$k_B T_c = 1.13\hbar\omega_c \exp\left(-\frac{1+\lambda}{\lambda-\mu^*}\right)$$
$$\lambda = \lambda(0) = \int_0^\infty \frac{2\alpha^2 F(\Omega)}{\Omega} d\Omega$$

Eliashberg theory

$$\lambda(m-n) = \int_0^\infty \frac{2\,\Omega\,\alpha^2 F(\Omega)}{\Omega^2 + (\omega_n - \omega_m)^2} d\Omega$$

The gap and T_c are determined from a sum over all couplings λ (mass renormalization).

Carbotte, RMP 82, 1027 (1990)

The two cents from optics

Farnworth and Timusk, PR 14, 5119 (1976)

Optical Eliashberg bosonic function
Charge channel excitation spectra
Average over all q vectors

The "simple" task: Find the electron-boson spectral density and guess what the boson is...

The Optical Conductivity Measurement

In-situ overfill technique

Reflectivity - Hg-1201

Optical Conductivity - Hg-1201

Obtaining the Scattering Rate - Extended Drude Model

Extracting the Bosonic Function from the Scattering Rate

ParisTech

Bosonic Mode and the Mass Enhancement

- Peak in mass enhancement is shifted by the gap value
- ✓ I²χ peak has no clear signature in the mass enhancement
- Eliashberg kernel kills the signature of the bosonic spectrum in the normal state

Yang et al., submitted 2008.

ParisTech

Hg-1201 - Effective Mass

- Mass enhancement shows a peak at 100 meV in the superconducting state
- ✓ 100 meV peak vanishes very close to Tc
- Expected gap around 20 meV predicts that bosonic peak should be at 60 meV

Yang et al., submitted 2008.

Hg1201 - Scattering Rate and I²X Inversion

Yang et al., submitted 2008.

Charge and Spin spectral functions on Hg-1201

Yang et al., submitted 2008.

Yu et al., condmat 0810.5759

Optical Bosonic Spectra in PCCO

...and also in ortho-II YBCD

Optics, Neutrons and T_c Scale

Yang et al., submitted 2008.

- Generalized Drude formula defines a frequency dependent scattering rate.
- Inversion of scattering rate allows for the determination of the Eliashberg optical bosonic spectrum.
- ✓ Optical bosonic spectrum shows a resonance peak that scales with T_c .
- Correlation between optics and neutron scattering data indicate that carriers are coupled to spin fluctuations.

Electron-boson spectral density in BSCCO

Optical Eliashberg bosonic function
 Charge channel excitation spectra
 Average over all q vectors

Hwang et al., PRB 75, 144508 (2007)

Coupling to Spins or to Phonons?

van Heuman et al., arXiv 0807.1730

