Diffraction des Rayons X Synchrotron sous Champ Magnétique Intense

Etude du manganite Ca_{0.8}Sm_{0.16}Nd_{0.04}MnO₃

F. Duc, P. Frings, M. Nardone, J. Billette, A. Zitouni, K. Chesnel, and G.L.J.A. Rikken Laboratoire National des Champs Magnétiques Pulsés, Toulouse, France

> *C. Detlefs, T. Roth (ID06)* ESRF, Grenoble, France

J. Vanacken, G. Zhang Pulsveldengroep, INPAC, Louvain, Belgique

> *C. Strohm, J.E. Lorenzo* Institut Néel, Grenoble, France

R. Suryanaryanan Laboratoire de Physico-Chimie de l'Etat Solide, Orsay, France

Outline

- Le dispositif expérimental
 - Combinaison champ magnétique intense/Diffraction Synchrotron
- Application au manganite dopé en électron Ca_{0.8}Sm_{0.16}Nd_{0.04}MnO₃
 - Caractérisation par diffraction sur poudre vs T et B
 - Mesures de transport et d'aimantation en champ magnétique pulsé
 - Conclusion
- Perspectives

Le générateur de champ magnétique pulsé

Un générateur de champ pulsé transportable

- 2 unités de stockage
 1 unité de contrôle/chargeur
- C = 1mF, V_{max} = 24 kV, E_{max} = 130 kJ
- Poids total ≈ 2.8t
- Dimensions: 1.25 x 1.30 x 2.85 m³

Bobine de champ pulsé et cryogénie

Géométrie Faraday

Caractéristiques bobine

- bobine de fil CuNbTi
- $\mathcal{O}_{\text{bore}} = 20 \text{ mm}, \mathcal{O}_{\text{externe}} = 130 \text{ mm}, \text{ L} = 80 \text{ mm}$
- R = 60 mΩ à 77 K
- B // faisceau (géométrie Faraday)
- Bobine immergée dans LN₂
- Angle d'ouverture de la bobine: 40°
- Angles optiques accessibles: \rightarrow 31 %36 °

Cryostat Helium

- Cryostat à circulation d'He
- 5 < *T* < 300 K
- Capteurs de T(2)
- Bobine pick-up dB/dt (Champ)

Bobine de champ pulsé et cryogénie

Bobine

Cryostat LN₂

Coil design: J. Billette (LNCMP), cryostat design: M. Nardone, A. Zitouni (LNCMP)

Caractéristiques du champ magnétique pulsé

Limite de 30 T fonction du type de fil \rightarrow "duty cycle", fatigue...

Diffraction sur poudre en champ intense sur ID20

Acquisition des données - Synchronisation

- Synchronisation ouverture faisceau RX/B_{max}
- Signal intégré sur une impulsion (≈ 2-5ms)
- Echauffement de la bobine après une séquence de tirs

$Ca_{0.85}Sm_{0.15}MnO_3$

 $-T = T_N = T_S$: transition du 1^{er} ordre structurale et magnétique

- Effet du champ magnétique: $T < T_N$
 - Propriétés de magnétorésistance
 - Transition métamagnétique + transition structurale induite par le champ

 $\label{eq:magnetoresistance} \begin{array}{l} \mbox{Magnétorésistance colossale pour x = 0.85$} \\ \mbox{Ca}_{0.85}\mbox{Sm}_{0.15}\mbox{MnO}_3 \end{array}$

Diagramme de phase *H*-*T*

Martin et al., J. Solid State Chem. 134 (1997) 198 Mahendiran et al., Phys. Rev. B 62 (2000) 11644 Respaud et al., Phys. Rev. B 63 (2001) 144426 Algarabel et al., Phys. Rev. B 65 (2002) 104437

$Ca_{0.8}Sm_{0.16}Nd_{0.04}MnO_3$: Diffraction sur poudre vs T

$Ca_{0.8}(Sm,Nd)_{0.2}MnO_3$ Diffraction sur poudre vs *T*

- T ≥ 160 K:
 - Structure orthorhombique Pnma
- 122 ≤ T < T_S
 - Domaine biphasé: $Pnma + P2_1/m$
 - T= 122 K:

 $P2_1/m \rightarrow 33 \pm 1 \%$

- T < 122 K: domaine biphasé
 - Phase majoritaire: monoclinique $P2_1/m \rightarrow 84-85 \pm 1 \%$
 - Phase minoritaire: orthorhombique *Pnma*

Effet de B phase monoclinique majoritaire phase orthorhombique majoritaire

- $T < T_S$: $P2_1/m$ monoclinique $\rightarrow Pnma$ orthorhombique
- A 30 T: ~ 15% $P2_1/m$ subsiste \rightarrow coexistence de 2 phases

Diffraction sur poudre vs B

• T \geq 160 K \rightarrow structure orthorhombique *Pnma*

$Ca_{0.8}(Sm,Nd)_{0.2}MnO_3$: Aimantation vs T

*T*_N ~ 112 K: Transition magnétique

$Ca_{0.8}(Sm,Nd)_{0.2}MnO_3$: Résistivité vs T (FC & ZFC)

T_{MI} < 120 K: Transition métal-isolant

• BT: effet magnéto-résistif

Mesures d'aimantation en champ pulsé vs $Ha \neq T$

H_c augmente quand T décroît

Mesures d'aimantation en champ pulsé vs Hà 17K

Conclusion: Ca_{0.8}(Sm,Nd)_{0.2}MnO₃

- Transition structurale pour T < 160 K
- Transition magnétique + transition métal-isolant pour $T_{MI} \sim 112 \text{ K}$
- T < 125 K : coexistence et compétition de 2 états:
 - un état de type *C* AFM pur $(P2_1/m)$
 - un état de type G (Pnma) AFM avec des petits domaines FM
- BT: Effet de B
 - proportion des états G et C

dépendent de *B*

- proportion des phases AFM et FM dans l'état G $\int d$ d
- transition induite par B: d'un état mixte G-C vers un état G

Perspectives

- Dispositif expérimental transportable \rightarrow ESRF, SOLEIL
- Nouveau générateur transportable 1 MJ (t_{montée} = 10 ms, *B* jusqu'à 40 T, testé, disponible 2009)
- **Bobine "splitté"** avec $B \perp$ faisceau, 30T (disponible 2009)
- **Nouveaux cryostats** LN₂ et He : 1,4 K < T < 300 K (en cours de fabrication)

