A Raman scattering investigation across the magnetic and MI transition

in Rare Earth nickelate $RENiO_3$ thin films

C. Girardot ^{1,2}, <u>J. Kreisel</u>¹, S. Pignard ¹

- ¹ Laboratoire des Matériaux et du Génie Physique (CNRS) Minatec, Grenoble Institute of Technology , <u>kreisel@inpg.fr</u>
- ² Schneider Electric Industries S.A.S.
 Grenoble, France

•

Rare earth nickelates: RENiO₃

- Electric phase diagram
- Magnetic phase diagram
- Structural phase diagram

• Open questions

• Investigated samples: $Sm_{1-x}Nd_xNiO_3$ thin films

- Temperature-dependent Raman scattering
 - Metal-insulator phase transition
 - Magnetic phase transition
 - The paramagnetic-insulator phase

Rare earth nickelates: RENiO₃

G. Demazeau, A. Marbeuf, M. Pouchard, and P. Hagenmuller, JSSC. 3, 582 (1971).

Difficult stabilization of Ni³⁺

 \rightarrow No single crystals available ! \rightarrow Need of <u>high-pressure</u> or <u>thin film</u> synthesis

Orthorhombic *Pbnm* ($a^{-}a^{-}c^{+}$ tilts)

Review: M.L. Médarde, J. Phys.: Condens. Mat. 9, 1997, 1679-1707

Key parameter: Tilt angle θ

Linear decrease of tilt angle with RE^{3+} ionic size 165° (LaNiO₃) to 145° (LuNiO₃)

Electric and magnetic phase transitions in RNiO₃

J.B. Torrance et al., Phys. Rev. B 45, 8209 (1992).

The M-I transition in the charge-transfer scheme

Figure 15. The M–I transition in the charge-transfer scheme. The narrowing of the O 2p-derived valence band below T_{M-I} would take place because of the less efficient overlap of the O 2p and Ni 3d orbitals produced by the decrease of the Ni–O–Ni superexchange angle.

Review: M.L. Médarde, J. Phys.: Condens. Mat. 9, 1997, 1679

Structural phase transition at the metal-insulator transition

VOLUME 82, NUMBER 19

PHYSICAL REVIEW LETTERS

10 May 1999

Charge Disproportionation in RNiO₃ Perovskites: Simultaneous Metal-Insulator and Structural Transition in YNiO₃

J. A. Alonso,¹ J. L. García-Muñoz,² M. T. Fernández-Díaz,³ M. A. G. Aranda,⁴ M. J. Martínez-Lope,¹ and M. T. Casais¹

Direct evidence	<u>Structural</u> phase transition at $T_{MI} \rightarrow 2$ different types of octahedra
Model	Long-range charge dispropornation (order)
	$2Ni^{3+} \rightarrow Ni^{(3+)+\delta} + Ni^{(3+)-\delta}$
Proposition	Universal driving force for gap opening at T_{MI} for all RENiO ₃

Modified phase diagram

Questions

- Structural phase transition at T_{MI} for SmNiO₃ ? Not detected by high-resolution powder diffraction
- Difference between $NdNiO_3$ and $SmNiO_3$? $T_{MI} = T_N \iff T_{MI} \neq T_N$

Phonon signature around <u>magnetic</u> and <u>electric</u> transition ?

N. Ihzaz et al. *Phys. Stat. Sol. (c)* **1**, 1679 (2004) *C. Girardot et al. Surface & Coatings Techn.* **201**, 9021 (2007) F. Conchon et al. *Appl. Phys. Lett.* **91**, 192110 (2007)

Investigated thin films (CVD synthesis)

Room temperature Raman spectra

- <u>black thin films</u> \rightarrow sensitive to laser power \rightarrow long acquisition time
- with precaution: well-defined Raman spectra

C. Girardot, J. Kreisel, S. Pignard, N. Caillault, F. Weiss Phys. Rev. B 78, 104101 (2008)

Raman scattering of a $NdNiO_3$

Similar to : M. Zaghrioui, A. Bulou, P. Lacorre, and P. Laffez, Phys. Rev. B 64, 081102 (2001)

Raman scattering of $SmNiO_3$

400

450

500

-180°C

150°*C*

550

• Evidence for structural phase transition at T_{MI}

• $T_{MI} < T < T_N$: Anharmonic phonon softening

Raman scattering of Sm_{0.6}Nd_{0.4}NiO₃

SmNiO₃ $T_{MI} \neq T_N$

Different temperature-dependent Raman signatures

Metal - insulator transition is not the same for all $RNiO_3$!

 $NdNiO_{3}$ $T_{MI} = T_{N}$

Understanding of

the peculiar phonon softening ?

Structural phase transition or magneto-striction or spin-phonon coupling ? -> No

One potential ingredient: Long-range \leftrightarrow Short range order

PHYSICAL REVIEW B 69, 153105 (2004)

Chemical bonding and electronic structure of $RNiO_3$ (R=rare earth)

J.-S. Zhou and J. B. Goodenough

Texas Materials Institute, ETC 9.102, University of Texas at Austin, 1 University Station, C2201, Austin, Texas 78712, USA

PHYSICAL REVIEW B 71, 012104 (2005)

Short-range charge order in *R*NiO₃ perovskites (*R*=Pr, Nd, Eu, Y) probed by x-ray-absorption spectroscopy

Cínthia Piamonteze,^{1,2} Hélio C. N. Tolentino,¹ Aline Y. Ramos,^{1,3} Nestor E. Massa,⁴ Jose A. Alonso,⁵ Maria J. Martínez-Lope,⁵ and Maria T. Casais⁵ ¹Laboratório Nacional Luz Síncrotron, Caixa Postal 6192, 13084-971 Campinas/SP, Brazil ²IFGW/UNICAMP, 13083-970 Campinas/SP, Brazil ³LMCP-UMR, 7590 CNRS, Paris, France ⁴LANAIS, CEQUINOR, UNLP, C.C. 962, 1900 La Plata, Argentina ⁵Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid, Spain

Local clusters do exist \rightarrow Change in size (and charge) with temperature ?

 $SmNiO_3$ $T_{MI} \neq T_N$

Softening accelerates at T_N

(Local ?) Magnetism plays a role

Modification of a specific bonding Eigenvector calculations needed Order parameter

- Octahedra tilt ? - Charge order ?

Suggestion of charge order as order parameter: F.P. de la Cruz *et al.* Phys. Rev. B **66**, 153104 (2002)

NdNiO₃ $T_{MI} = T_N$

Hypothesis: Increasing charge order?

Charge order as order parameter ? \rightarrow Phonon softening = Change in chemical bonding

Going further...: Coupling in a multiferroic regime ?

nature materials | VOL 6 | JANUARY 2007

Multiferroics: a magnetic twist for ferroelectricity

SANG-WOOK CHEONG^{1,2} AND MAXIM MOSTOVOY³

J. Van den Brink, D.I. Khomskii, *J. Phys.: Cond Mat.*, (2008) accepted → CondMat:0803.2964

Multiferroicity due to charge ordering

Advances in perovskite nickelate research

G. Catalan, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3AQ

G.Catalan, Phase Transit. 81 (2008)

Not yet experimentally verified !

« Multiferroic scenario »

Phonon frequencies are affected by the correlation of spins

$$\omega = \omega_0 + \lambda \langle S_i \cdot S_i \rangle$$

<u>but</u>: Spin-phonon coupling <u>alone</u> cannot explain the softening

Hypothesis:

Onset of (local) magnetism in presence of ferroelectric instability

→ Interactions of order parameters? Enhanced spin-phonon coupling?

Concluding remarks

- RE-Nickelates: Still a playground for experimentalists (and theoreticians)
- $SmNiO_3 \approx Sm_{0.6}Nd_{0.4}NiO_3$ Structural phase transition at T_{MI}
- $SmNiO_3 \neq NdNiO_3$ Different mechanism at MI transitions
- MI transition in Nickelates: should be re-investigated
- Intriguing Phonon softening
 An experimental hint for multiferroicity ?!

