

« Electro-magnons » Couplage possible entre ondes de spins et phonons dans le multiferroïque BiFeO₃

P. Rovillain, M. Cazayous, Y. Gallais et A. Sacuto

maximilien.cazayous@univ-paris-diderot.fr

Scénarios

BiFeO₃ Propriétés ferroélectrique et magnétiques

Mesures Raman et Electromagnons?

Les symétries sont la clef de la corrélation entre les ordres

Eerenstein et al., Nature 442, 759 (Aug. 2006).

Rareté des multiferroïques

6694

J. Phys. Chem. B 2000, 104, 6694-6709

FEATURE ARTICLE

Why Are There so Few Magnetic Ferroelectrics?

Nicola A. Hill Materials Department, University of California, Santa Barbara, California 93106-5050

Raisons théoriques

- Symétrie: 13 (sur 122) groupes ponctuels autorisent la coexistence spontanée de P et de M
- ✓ La quadrature des orbitales: ions métalliques de transition d⁰ (ferroélectrique)/d^N (magnetisme)

<u>Observations</u>

✓ Très rares à températures ordianires (BiFeO₃)

 ✓La plus part possèdent un ordre anti-ferroïque (magnetique/électrique) M or P faible Perovskites

ABO₃, A₂B'B''O₆ e.g. BiFeO₃, TbMnO₃

Structure hexagonale

 $RMnO_3$ with R=Sc, Y, Ho-Lu

 RMn_2O_5 .

Systèmes magnétiques frustrés.

 La phase magnétique est complexe; un ordre AF incommensurable semble un point commun.

✓Fort couplage entre ferroelectricité et magnétisme dans les structures spirales de spin

Symétries

BiFeO₃ Propriétés ferroélectrique et magnétiques

Mesures Raman et Electromagnons?

Origines de la ferroelectricité

Comment expliquer le couplage fort entre ferroélectricité et magnetisme?

Ferroélectricité magnétique

Structure de spin spirale brise la symétrie d'inversion spatiale et temporelle

✓ Intéraction d'échange de Heisenberg

A. B. Sushkov et al., arXiv:0806.1207 (juin 2008)

✓ Courant de spin / Interaction Dzyaloshinskii-Moriya

Sergienko and Dagotto, Phys. Rev. B 73, 094434 (2006) Katsura, Nagaosa and Baltasky, Phys. Rev. Lett. 95, 057205 (2005)

Electromagnons (Ondes de spin excitées par un champ E)

Pimenov et al. Nature Phys (2006)

Origines de la ferroelectricité: Ferroélectricité magnétique

Sergienko and Dagotto, Phys. Rev. B 73, 094434 (2006)

Structure spirale de spins) DMI > Déplacement cristalin FE

Nouvelles excitations: les electromagnons

Charactère du magnon avec dipole électrique couplé à une radiation electromagnetique

Origines de la ferroelectricité: Ferroélectricité magnétique

Le cas BiFeO₃

Symétrie :

Distorsion des octahèdres d'Oxygènes DMI (non polaire)

Déplacement des ions dans la direction [111] > Ferroélectricité (polaire)

DMI n'est pas induite par la distorsion ferroélectrique

C. Ederer and C. J. Fennie, arXiv:0806.0589 (juin 2008)

Pas de couplage entre **P** et **M** : pas d'électromagnons

Symétries

Scénarios

 \checkmark BiFeO₃ Propriétés ferroélectrique et magnétiques

Mesures Raman et Electromagnons?

Synthèse de monocristaux de BiFeO₃

Taille millimétrique

Monocristaux avec une surface large

D. Lebeugle et al., PRB 76 (2007) 24116

Méthode de flux (Bi₂O₃-Fe₂O₃)

Flux BiFeO₃ crystal Crystalline cavity Al_2O_3 crucible

BiFeO₃ monocristal 1.4 x 1.6 x 0.04 mm³ (MEB)

Propriétés ferroélectriques des monocristaux

Ferroélectrique < Tc = 1100K

Ferroélectrique mono domaine

> Haute resistivité $\rho(300K, 100V) \sim 6.10^{10} \Omega.cm$

 $ightarrow P_{s} \sim 100 \ \mu C/cm^{2} \ (BaTiO_{3} \ Ps \sim 25 \ \mu C/cm^{2})$

D. Lebeugle et al., PRB 76 24116 (2007), D. Lebeugle et al., Appl. Phys. Lett 91 22907 (2007)

Propriétés magnétiques des monocristaux

Type Antiferromagnétique de type $G < T_N = 640K$

Un seul plan de rotation des spins (-12-1) contenant P and q : une seule cycloide

Propriétés magnétiques des monocristaux: mesures neutron

E field

2 domaines magnétiques 1 nouveau plan cycloïdal [-1-2-1] 1.012 k₂ = [0 δ- δ] 1.006 = [δ 0- δ] (ξ,0,ξ) = [δ 0- δ] 0.994 $k_3 = [-\delta \delta 0]$ 0.988 -0.012 -0.006 0.006 0.012 (ξ,0,-ξ)

Ţ

Basculement de la polarisation

Basculement du plan de la cycloïde

Couplage entre spins et polarisation

Structure spirale de spins induit la ferroélectricité ... D. Lebeugle et al., PRL 100 227602 (2008) Symétries

Scénarios

BiFeO₃ Propriétés ferroélectrique et magnétiques

✓ Mesures Raman et Electromagnons ?

Diffusion Raman : sonde en énergie et en moment

Inelastic light scattering : Sir C. Raman (1888-1970) Nobel price 1930

---- Stokes Process

Excitations sondées

Electrons Magnons Phonons

Signature Raman des excitations magnétiques

2 modes d'excitations : modes Φ et modes Ψ

M. Cazayous et al., PRL 101 097003 (2008)

Signature Raman des excitations magnétiques

Théorie phénoménologique Ginzburg-Landau

2 modes de propagation

modes Φ : dans le plan de la cycloïde

 $E_c(n) = \varepsilon_c(q) n$

modes Ψ : hors du plan de la cycloïde $E_{exc}(n) = \varepsilon_c(q)(n^2+1)^{1/2}$

 $\varepsilon_{c}(q)=5 \text{ cm}^{-1}(\text{cyclon energy})$

<u>Gap dans le mode Ψ : accrochage du plan de la cycloïde par le moment ferroélectrique</u>

Magnons = Excitations de spins possédant un caractère polaire

R. de Sousa and J. E. Moore, PRB 77 (2008) 12406

Signature Raman des excitations magnétiques

PolarisationOscillation directionGap?Sic'eBtarmedes sDtacks plactromagnoms, quel Nathlephonou qui donnele caractère polaire auxmagnons ?

34

1.2

Réorientation des spins hors du plan de la cycloïde à 130K et 210K

Couplage entre le phonon de plus basse énergie et les excitations de spins

Ce phonon est il spécial ?

Ce phonon est suspecté d'être le mode mou de la transition ferroélectrique

R. P. S. M. Lobo et al., PRB 76 172105 (2007)

Ramolissemment du magnon à T_N

Comportement inhabituel du phonon au dessus de T_N Ce phonon se déconnecte des excitations magnétiques à T_N

Conclusion

Rôle de la magnétostriction dans la formation des électromagnons

Comportements des ondes de spins différents sous champs selon le mécanisme microscopique