Interactions d'interface dans des superréseaux ferroélectriques révélées par leurs transitions de phase

M. Dawber^{*1}, <u>N. Stucki</u>¹, C. Lichtensteiger¹, S. Gariglio¹, E. Bousquet², P. Hermet², P. Ghosez², and J.-M. Triscone¹

¹ DPMC, Université de Genève, Suisse, ² Physique Théorique des Matériaux, Université de Liège, Belgium ^{*} Maintenant à Dept. of Physics and Astronomy, Stony Brook University, NY, USA

Superréseaux de PbTiO₃ / SrTiO₃

Echantillons – Croissance

MaNEP

Sommaire

- Caractérisation
- Modèle électrostatique
- Ferroélectricité impropre
- Propriétés piézoélectriques des superréseaux
- Conclusions

Superréseaux – Caractérisation

UNIVERSITÉ DE GENÈVE

Modèle électrostatique

co =

$$U_{SL}(P_P, P_S) = xU_P(P_P) + (1 - x)U_S(P_S) + U_{elec}(P_P, P_S)$$
$$U_{elec}(P_P, P_S) = \frac{-l_P E_P \cdot P_P - l_S E_S \cdot P_S}{l_P + l_S}$$

$$U_{elec}(P_P, P_S) = \frac{x(1-x)}{\epsilon_0}(P_S - P_P)^2 > 0$$

Polarisation uniforme dans la structure :

$$U_{SL}(P) = xU_P(P) + (1-x)U_S(P)$$

 En utilisant les énergies libres de PTO et STO et en suivant la procédure de Pertsev pour les couches minces :

$$U(P) = a_3^* P^2 + a_{33}^* P^4 + a_{111} P^6 + \frac{c_{11}^2 + c_{11}c_{12} - 2c_{12}^2}{c_{11}} u_m^2$$

$$a_3^* = a_1 + 2(rac{c_{12}}{c_{11}}g_{11} - g_{12})u_m,$$

 $a_{33}^* = a_{11} - rac{g_{11}^2}{2c_{11}}.$

N.A. Pertsev et al., Phys. Rev. Lett., **80** 1980 (1998) N.A. Pertsev et al., Phys. Rev. B, **61** R825 (2000) M. Dawber et al., Adv. Mat., **19** 4153 (2007)

• Finalement, on utilise les coefficients connus pour PTO et STO.

c/a, P, T_c, ϵ en fonction de la PTO volume fraction

UNIVERSITÉ DE GENÈVE

Comparaison d'un 9/3 et d'un 2/3

Ferroélectricité impropre

En utilisant un paramètre d'ordre principal à deux composantes (ϕ_{zi}, ϕ_{zo}) et la polarisation comme paramètre secondaire :

$$U = (T - T_c)(\frac{a_{zi}}{2}\phi_{zi}^2 + \frac{a_{zo}}{2}\phi_{zo}^2) - \frac{\beta}{2}P_z^2 - g\phi_{zi}\phi_{zo}P_z + \frac{1}{4}(b_{zi}\phi_{zi}^4 + b_{zo}\phi_{zo}^4) - E_zP_z$$

Un terme croisé linéaire couplant (ϕ_{zi} , ϕ_{zo}) et P apparaît.

$$P_z \propto (T_c - T)$$

$$(c/a)_{improper} \propto (T_c - T)^2$$

 χ est indépendant de *T* avec une valeur plus grande pour $T < T_c$ que pour $T > T_c$.

Quels pourraient être ce paramètre d'ordre principal et l'origine de ce comportement impropre de la ferroélectricité pour des x faibles dans nos structures ?

Paramètres d'ordre possibles

$$U = (T - T_c)\left(\frac{a_{zi}}{2}\phi_{zi}^2 + \frac{a_{zo}}{2}\phi_{zo}^2\right) - \frac{\beta}{2}P_z^2 - g\phi_{zi}\phi_{zo}P_z + \frac{1}{4}(b_{zi}\phi_{zi}^4 + b_{zo}\phi_{zo}^4) - E_zP_z$$

Antiferrodistortif $AFD_{zi} \left(\phi_{zi} \right)$

Antiferrodistortif $AFD_{zo} (\phi_{zo})$

Etat fondamental et distortions

DE GENÈVE

Distortion calculée

Evidence expérimentale – Rayons-x (1.5 0.5 0.5)

Scan θ -2 θ autour de la réfléxion (1.5 0.5 0.5) dans un superréseau avec une cellule unité de 14.9 Å (2/2) crûe sur un substrat de STO non dopé. Le pic indique un doublement de la cellule unité dans le plan et suggère la présence d'une rotation antiferrodistortive des octaèdres d'oxygène.

Sommaire

- Caractérisation
- Modèle électrostatique
- Ferroélectricité impropre
- Propriétés piézoélectriques des superréseaux
- Conclusions

Effet piézoélectrique

Effet piézoélectrique (STM) - Test sur PZT

5

Kuffer et al., Appl. Phys. Lett. 77, 1701 (2000)

STM avec Sawyer-Tower - Test sur PZT 20/80

Le STM couplé à un circuit Sawyer-Tower permet de mesurer simultanément la réponse piézoélectrique et la polarisation dans l'échantillon.

Superréseaux sur SRO – d₃₃ versus PTO volume fraction

Conclusions et perspectives

- Haute qualité cristalline et croissance cohérente de superréseaux PTO/STO.
- Développement d'un modèle électrostatique et prédiction des propriétés.
- Comportement ferroélectrique impropre :
 - Nouvel effet aux interfaces ;
 - Subtil état fondamental de la structure ;
 - Evidence expérimentale de ce nouvel état fondamental.
- Approche expérimentale avec support théorique :
 - Nouvelles routes pour la création d'oxydes sur mesure ;
 - Ingénierie d'interfaces : création, par exemple, de nouveaux matériaux avec couplage à d'autres instabilités.

