Acknowledgements

(aperçu de) la physique des oxydes de cobalt et de sodium Na_xCoO₂

Marc-Henri Julien Laboratoire de Spectrométrie Physique – UMR 5588 Université J. Fourier – Grenoble I

Cédric de Vaulx (PhD 2004-2006)

• NMR : H. Mayaffre, C. Berthier, M. Horvatic (Grenoble)

Material synthesis & crystal growth

P. Lejay, P. Strobel, H. Muguerra (Grenoble) C.T. Lin & D.P. Chen (MPI Stuttgart), J. Wooldridge, G. Balakrishnan & M.R. Lees (Coventry) J.M. Tarascon, M. Armand (Amiens) V. Pralong (Caen)

• XRD & SQUID: P. Bordet, V. Simonet (Grenoble), S. Hébert (Caen)

Objectifs de la présentation

- Aperçu global du diagramme de phase de Na_xCoO₂ et de ses propriétés électroniques principales (corrélations électroniques)
- 2) Particularité majeure de ces composés : mise en ordre des Na⁺ et impact sur les propriétés électroniques

Search for triangular analogs of high T_c's

A_xMO₂ genealogy

Intercalation materials, ionic conductors

- LiNiO2, NaNiO2, AgNiO2, magnetism
- LiVO2, LiMn02, cathode materials

Cobaltate genealogy

A₁CoO₂ are all band insulators (A=Li, Na, K, Ag, etc.)

Although obtaining pure x=1 compounds can be challenging

- LiCoO2 : Ménétrier et al., Electrochem. Solid-State Lett., 11, A179 (2008)
- AgCoO2 : Muguerra et al., J. Solid State Chem. <u>181</u>, 2883 (2008)

Hole-doping the x=1 band insulator

By removing <u>x(Na+)</u> from the layers

Orbital and band structure issues

Not discussed here...

• Co³⁺ intermediate spin state ?

(local symmetry breaking) No spin-state transition *ever* observed in Na_xCoO₂

- a_{1g} & e'_g bands, fermiology...
- Hybridization with O_{2p} orbitals
- Orbital ordering, spin-orbit coupling ?

Two kinds of Na sites

M. Roger et al., LT25 proceedings & Nature 445, 631 (2007)

Lots of material issues

- Observed phases depend on synthesis method & conditions electrochemical, chemical, direct, ion-exchange, pulsed laser deposition, etc.
- Accurate measure of x(Na)is challenging (while physical properties can change with variation of $x \sim 1\%$)
- Surface ordering different from bulk
- Sample aging (Na losses)

• Good samples are clean! (sharp NMR lines, *Shubnikov–de Haas* oscillations)

Finite number of stable phases Ubiquitous phase separation for 0.67 < x < 0.9

Na_xCoO₂ Delmas, Solid State Ionics (1981) de Vaulx, *PRL* (2005) Lee, *Nature Materials* (2006) Li_xCoO₂ Van der Ven, *PRB* (1998) Ménétrier, *J. Mater. Chem.* (1999) Marianetti, *Nature Materials* (2004)

Impact of Na⁺ ordering on magnetism

Apparition of a magnetic transition at 8 K, depending on cooling protocol above ~200 K

Na⁺ ordering is observed e.g. vacancy clustering for x ~ 0.8

M. Roger et al., Nature 445, 631 (2007)

Na1-Na2 stripe correlations for x < 0.7 (G. Collin)

Details are controversial (accuracy of x values ?)

Electrostatic potential from Na+ ions

Modulates charge density in cobalt planes

Na1 should dislike Co⁴⁺ more than Co³⁺ (Coulomb repulsion)

M. Roger et al., Nature 2007

« Texture » in cobalt planes depends on 3D stacking of Na⁺ ordering pattern

Relevance to high Tc cuprates

Dopant-induced electronic inhomogeneity

Atomic-Scale Sources and Mechanism of Nanoscale Electronic Disorder in $Bi_2Sr_2CaCu_2O_{8+\delta}$ K. McElroy,^{1,2} Jinho Lee,¹ J. A. Slezak,¹ D.-H. Lee,² H. Eisaki,³ S. Uchida,⁴ J. C. Davis^{1*} $\overline{\Delta} = 55 \text{meV}$ N - 590

12 AUGUST 2005 VOL 309 SCIENCE

PHYSICAL REVIEW LETTERS 28 JANUARY 2002

⁶³Cu NQR Evidence for Spatial Variation of Hole Concentration in La_{2-r}Sr_rCuO₄ P. M. Singer, A. W. Hunt, and T. Imai

++++++		•!•!!	++++++
● ++++/	KI III	+++++ +++++	
		+++++	
1111		↓ + + + + + + + + + + + + + + + + + + +	╪╪ ┊ ╋╡
			┊┊┊┟┊∳
+++	• +++ •	++++++	₩.
$\begin{array}{c} + + + + + \\ + + + + + \end{array}$		┼┼┼┼╋ ╁╋╋╁╱	****
++++		<u>++++</u> +	

High values of the thermoeletric power

Strongest at the highest x(Na)

Lee et al, Nature Materials (2006)

Wang et al., Nature (2003)

Magnetic properties / electron correlations are involved

Magnetic properties

Curie-Weiss bulk magnetization

 Magnetic transitions Ex: $T_M = 22$ K for x = 0.75*None* for x = 0.67 and x = 0.71

• A-type antiferromagnet Bayrakci PRL (2005), Helme PRL (2005) FM planes ⇒ no frustration ⇒ too bad...

Signature of electron correlations

As well as in transport measurements (T-linear resistivity, m*/m ~ 3 - 10)

Na_{0.5}CoO₂

Fermi surface instability at x=0.5

Very small charge differentiation

Unconventional superconductivity ?

- Type II
- Short coherence length (~100 Angstrom)
- Singlet pairing
- Pairing symmetry ?

AFM spin fluctuations and proximity to magnetic ordering

The x = 0 limit

CoO₂ is *not* a Mott insulator

But a correlated metal

(Metal-insulator) Mott transition occurs for U/t \approx 10-12 on the triangular lattice

Na_xCoO₂ summary

- Carrier concentration can be varied over a wide range (1 elect./cell)
- Electron correlations throughout the phase diagram
- Unexpectedly, correlations are strongest at high Na concentrations
- Correlations can be enhanced by Na⁺ potential

