

# Structure électronique des Cobaltates Na<sub>x</sub>CoO<sub>2</sub>

Antonin Bourgeois Dir. thèse: (M.D. Núñez-Regueiro) M.J. Rozenberg Collaboration: A.A. Aligia

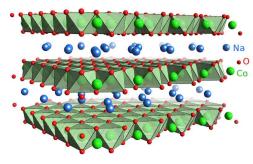
GDR MICO, Autrans, 1-12-2008

| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>000 | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
| Plan                             |                  |                 |                  |                           |

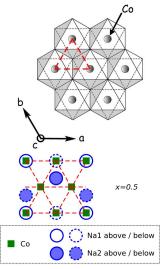


2 Motivation : désaccord LDA - ARPES

## 3 Modèle effectif

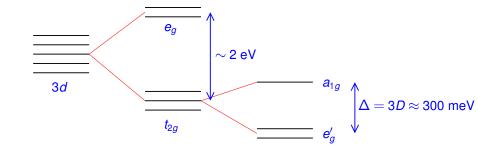


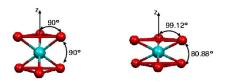

- $U \rightarrow \infty$  : boson esclave en champ moyen
- U fini : Dynamical Mean-Field Theory (DMFT)



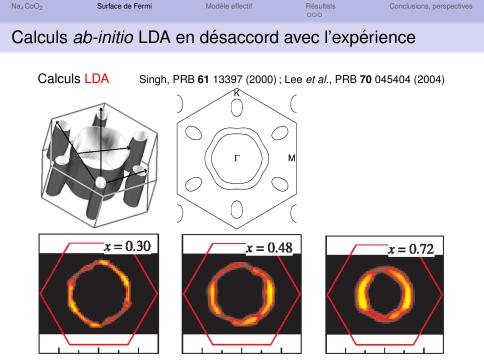

## Structure cristallographique de Na<sub>x</sub>CoO<sub>2</sub>

- Structure en couches : Na / CoO<sub>2</sub> électroniquement actif
- Co en réseau riangle dans les plans
- Octaèdres de O autour des Co
- $c \gg a$  : composé quasi-2D



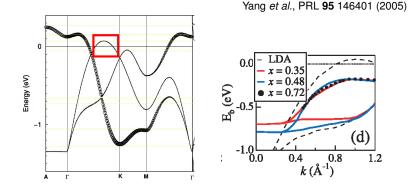




| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>000 | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
|                                  |                  |                 |                  |                           |

### Orbitales du Cobalt mises en jeu

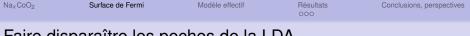





Octaèdre de O (champ cristallin) + déformation rhomboèdrique : 5 niveaux  $3d \rightarrow e'_g, a_{1g}, e_g$ 

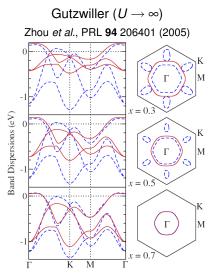


| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|-----------|---------------------------|
|                                  |                  |                 | 000       |                           |


Mesures de photoémission ARPES

## Calculs ab-initio LDA en désaccord avec l'expérience

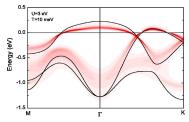



Seulement le lobe a<sub>1g</sub>, qui contient le bon nombre de trous

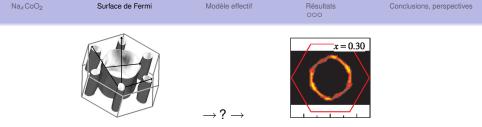
• "Sinking-pockets" : le haut de la bande  $e'_a$  reste sous  $\varepsilon_F$ 



# Faire disparaître les poches de la LDA


• LDA + corrélations : fit LDA  $\rightarrow$  modèle de Hubbard




DMFT à *x* = 0.3

Ishida et al., PRL 94 196401 (2005);

Perroni et al., PRB 75 045125 (2007)



⇒ Contradiction, poches présentes si on ne fait pas d'approximation brutale



Pour faire disparaître les poches :

- Désordre du Na, mais invalidé par l'ARPES
  Singh *et al.*, PRL **97** 016404 (2006), Qian *et al.*, PRL **97** 186405 (2006)
- Corrélations, mais résultats contradictoires et poches présentes pour les calculs "réalistes"

#### La LDA : un mauvais point de départ?

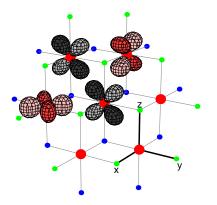
Les calculs L(S)DA donnent des poches dans la direction FK et un mauvais état fondamental.

En incluant les corrélations, ces problèmes ne sont pas résolus.

| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>000 | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
| Modèle                           | effectif         |                 |                  |                           |

#### Point de départ : image atomique

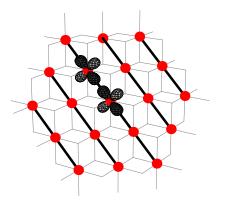
- Modèle à 3 bandes, les 3 orbitales  $t_{2g}$  du Co  $(e'_q$  et  $a_{1g})$
- Arguments géométriques sur l'orientation des orbitales 3d des Co et 2p des O dans le cristal Koshibae et al., PRL 91 257003 (2003)
- Transferts directs Co–Co et indirects Co–O–Co
- Forte covalence Co–O
- Champ cristallin des O (et effet Jahn-Teller)
- Répulsion coulombienne sur site


|                                  |                  |                 | 000       |                           |
|----------------------------------|------------------|-----------------|-----------|---------------------------|
| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats | Conclusions, perspectives |

## Transferts directs Co–Co

Tous les transferts  $3d \rightarrow 3d$  ne sont pas autorisés.

On part d'une  $3d_{yz}$ :


- Transfert possible  $\rightarrow 3d_{yz}$
- Orbitales 3d inaccessibles



| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>000 | Conclusions, perspecti |
|----------------------------------|------------------|-----------------|------------------|------------------------|
| Trenefor                         |                  | 0-              |                  |                        |

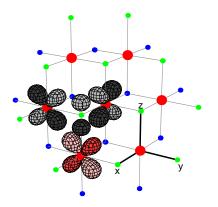
### Transferts directs Co–Co

### Les sites accessibles par transferts successifs d'un porteur d'une orbitale donnée forment une chaîne linéaire



- Transfert direct uniquement intra-orbital (ex.  $yz \rightarrow yz$ )
- 3 sous réseaux de chaînes linéaires parallèles (1 par orbitale t<sub>2g</sub>), indépendants et à 120°

| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>000 | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
| Transfe                          | rts indirects Co | -O-Co           |                  |                           |


\_\_\_\_

Tous les transferts  $3d \rightarrow 2p \rightarrow 3d$ ne sont pas autorisés. On part d'une  $3d_{vz}$ :

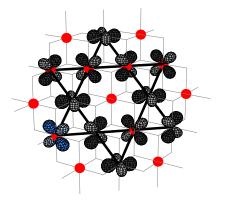
• Transfert possible

 $3d_{yz} \rightarrow 2p_z \rightarrow 3d_{zx}$ 

 Co inaccessible (aucune orbitale 3d n'a de recouvrement avec les précédentes)



Na<sub>x</sub>CoO<sub>2</sub>


Modèle effectif

Résultats

Conclusions, perspectives

# Transferts indirects Co-O-Co

### Les sites accessibles par transferts successifs d'un porteur d'une orbitale donnée forment un réseau Kagomé

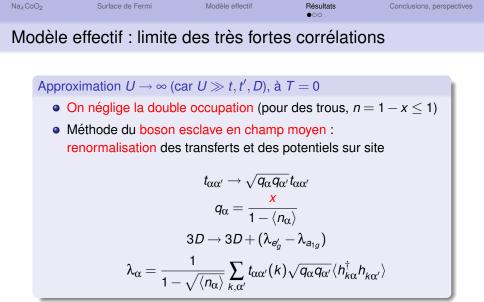


- Transfert indirect uniquement inter-orbital (ex.  $yz \rightarrow zx$ )
- 4 sous réseaux Kagomés emboîtés (sur un site donné, 1 par orbitale t<sub>2g</sub> + 1 "vide")

| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>000 | Conclusions, perspectives |  |  |
|----------------------------------|------------------|-----------------|------------------|---------------------------|--|--|
| Hemiltonian neur des trous       |                  |                 |                  |                           |  |  |

#### Hamiltonien pour des trous


Dans la base  $\{d_{xy}, d_{yz}, d_{zx}\}$  on a pour des trous (n = 1 - x)

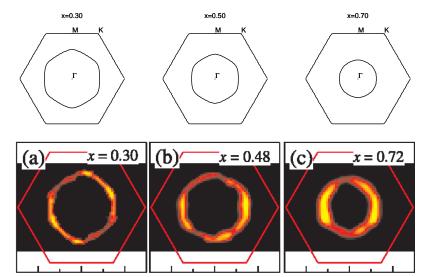

$$\mathcal{H} = \sum_{k} \sum_{\alpha,\alpha',\sigma} \left( \varepsilon_{\alpha\alpha'}(k) + \varepsilon_{\alpha\alpha'}'(k) + D_{\alpha\alpha'} \right) h_{k\alpha\sigma}^{\dagger} h_{k\alpha'\sigma} + \sum_{k} \sum_{\substack{\alpha,\sigma \\ \neq \alpha',\sigma'}} U_{\alpha\alpha'}^{\sigma\sigma'} n_{k\alpha\sigma} n_{k\alpha'\sigma'}$$

$$\begin{split} \epsilon_{\alpha\alpha'}(k) &= -2t \begin{pmatrix} 0 & \cos\theta_3(k) & \cos\theta_2(k) \\ \cos\theta_3(k) & 0 & \cos\theta_1(k) \\ \cos\theta_2(k) & \cos\theta_1(k) & 0 \end{pmatrix} & \text{(indirect)} \\ \epsilon'_{\alpha\alpha'}(k) &= 2t' \begin{pmatrix} \cos\theta_1(k) & 0 & 0 \\ 0 & \cos\theta_2(k) & 0 \\ 0 & 0 & \cos\theta_3(k) \end{pmatrix} & \text{(direct)} \\ D_{\alpha\alpha'} &= -D \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} & \text{(champ cristallin)} \end{split}$$

| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>000 | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
| Valeur                           | des paramètres   |                 |                  |                           |

$$\mathcal{H} = \sum_{k} \sum_{\alpha,\alpha',\sigma} \left( \frac{\varepsilon_{\alpha\alpha'}(k) + \varepsilon_{\alpha\alpha'}'(k) + D_{\alpha\alpha'}}{k} \right) h_{k\alpha\sigma}^{\dagger} h_{k\alpha'\sigma} + \sum_{k} \sum_{\substack{\alpha,\sigma \\ \neq \alpha',\sigma'}} U_{\alpha\alpha'}^{\sigma\sigma'} n_{k\alpha\sigma} n_{k\alpha'\sigma'}$$

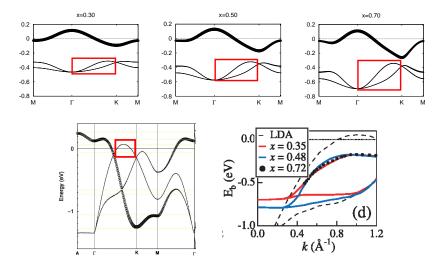





A.B. et al., PRB 75 174518 (2007)

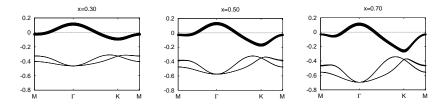
| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>●○○ | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
|                                  |                  |                 |                  |                           |

## Modèle effectif : limite des très fortes corrélations


#### Résultats (surfaces de Fermi) : seulement le lobe central



| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|-----------|---------------------------|
|                                  |                  |                 | 000       |                           |


# Modèle effectif : limite des très fortes corrélations

#### Résultats (structure de bandes) :



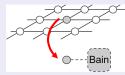
| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>●○○ | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
|                                  |                  |                 |                  |                           |

## Modèle effectif : limite des très fortes corrélations



Compatibles avec l'ARPES : pas de poches périphériques

• Forte renormalisation par rapport à la LDA (surtout à x faible)

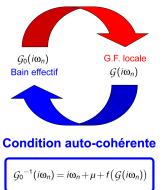

- largeur de bande :  $W \sim 0.6 \text{ eV}$  pour x = 0.3 ( $W_{(LDA)} \sim 1.4 \text{ eV}$ )
- vitesse de Fermi :  $v_F \sim 0.25$  eV.Å pour x = 0.3 ( $v_{F(LDA)} \sim 1$  eV.Å)

#### Aller plus loin que le boson esclave?

- $U \rightarrow \infty$  : pas d'effet des interactions inter-orbitales
- Renormalisation q / quand x \

| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>○●○ | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
| Principe                         | e de la DMFT     |                 |                  |                           |

 Réécriture du Hamiltonien : site isolé couplé à un bain

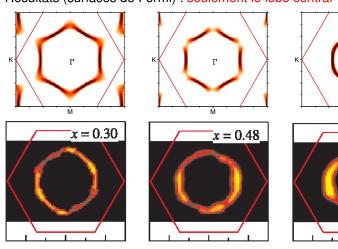


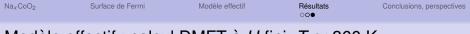

- Problème d'impureté : Monte Carlo Quantique
- Traitement analytique :  $Im(\mathcal{G}(\omega)) \equiv ARPES$

Georges *et al.*, RMP **68** 13 (1996) Kotliar *et al.*, RMP **78** 865 (2006)

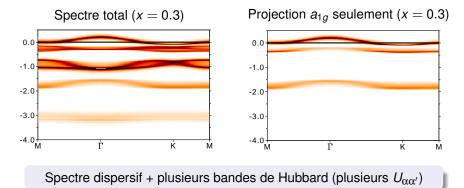
$$egin{aligned} \mathcal{S}_{\textit{eff}} = & \sum_lpha \iint_0^eta d au d au' h^\dagger_lpha( au) \mathcal{G}_{0,lpha}{}^{-1}( au- au') h_lpha( au') \ &+ \sum_{lpha < lpha'} U_{lpha lpha'} \int_0^eta d au \, n_lpha( au) n_{lpha'}( au) \end{aligned}$$

#### Problème d'impureté



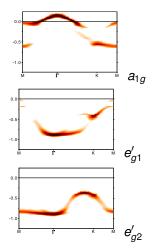

ŵ.


x = 0.72

Résultats (surfaces de Fermi) : seulement le lobe central



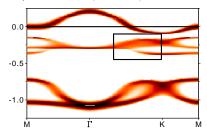


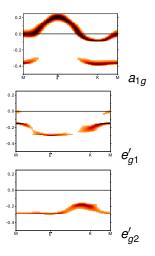

Résultats (structure de bandes) :



| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>○O● | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
|                                  |                  |                 |                  |                           |

Résultats ("sinking pockets") :

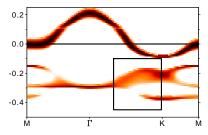

Spectre total (x = 0.7)

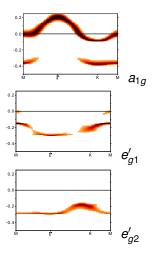



| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>○O● | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
|                                  |                  |                 |                  |                           |

Résultats ("sinking pockets") :

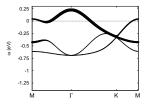
Spectre total (x = 0.3)



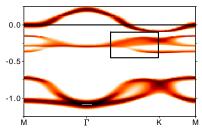




| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>○O● | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
|                                  |                  |                 |                  |                           |

Résultats ("sinking pockets") :

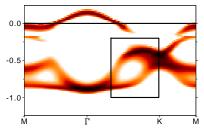

Spectre total (x = 0.3)






| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi  | Modèle effectif | Résultats<br>○O●    | Conclusions, perspectives |
|----------------------------------|-------------------|-----------------|---------------------|---------------------------|
| Modèle e                         | effectif : calcul | DMFT à U fir    | ni, $T \approx 360$ | К                         |

Bandes à U = 0 :




*x* = 0.3



#### Origine des "sinking pockets"

- Faibles dopages : bandes de Hubbard e'<sub>g</sub>
- Forts dopages : bandes dispersives e'<sub>g</sub>



| Na <sub>x</sub> CoO <sub>2</sub> | Surface de Fermi | Modèle effectif | Résultats<br>000 | Conclusions, perspectives |
|----------------------------------|------------------|-----------------|------------------|---------------------------|
| Conclus                          | sions, perspect  | ives            |                  |                           |

Modèle effectif pour les Cobaltates Na<sub>x</sub>CoO<sub>2</sub>

- Modèle "naturel" à partir des orbitales et de leur géométrie
- Limite U → ∞ (boson esclave) et calcul réaliste DMFT : surface de Fermi avec un lobe central et pas de poches selon ΓK, vitesses de Fermi v<sub>F</sub> ≈ 0.4±0.1 eV.Å, "sinking pockets" ⇒ bon accord avec l'ARPES
- L'absence de poches e'<sub>g</sub> selon ΓK n'est pas un effet de fortes corrélations, mais est liée à la structure du Hamiltonien (importance du champ cristallin D)

#### Perpectives

Propriétés thermodynamiques

Comportement magnétique complexe, lié à la structure du réseau

- Au delà de la phase uniforme ? (phases ordonnées pour *x* > 0.5)
- Rôle du Na ?