Interactions multipolaires dans les hexaborures de terres rares RB₆

Julien ROBERT & Jean-Michel MIGNOT

Laboratoire Léon Brillouin, Saclay CEA/CNRS

Plan:

- Introduction: les moments multipolaires des électrons 4f
- CeB₆ archétype des systèmes multipolaires
- Substitution de la terre rare: $Ce_{x}R_{1-x}B_{6}(R: La, Pr)$
 - \succ facteur de forme octupolaire dans Ce_{0.7}La_{0.3}B₆
 - > phases magnétiques et quadrupolaires dans $Ce_{0.7}Pr_{0.3}B_6$

GDR Mico, Autrans, le 04/12/08

Degrés de liberté orbitaux dans les ions 4f et multipôles

• degrés de liberté orbitaux/de spins dans les **terres rares**: multipôles (spin-orbite: J=L+S bon nombre quantique)

• métaux: interaction via les électrons de conduction (type RKKY)

différents types de couplages (compétition d'interactions)

 effets sur le magnétisme (ordres magnétiques complexes: multi-k, non-collinéaires, ...)

• composés et familles de composés: *R*B₆, skuttérudites, borocarbures, UPd₃, TmTe, etc.

CeB₆: Champ cristallin et dégénérescence orbitale

distributions de charge : Walter (1985)

CeB₆: Caractérisation des phases ordonnées (Effantin et al., 1985)

CeB₆: Le rôle des octupôles...

Substitution de la terre rare

Substitution de la terre rare

Ce_{0.7}La_{0.3}B₆: un ordre "purement" antiferro-octupolaire...

$Ce_{0.7}La_{0.3}B_6$: facteur de forme octupolaire (coll.: Kuwahara et al.)

➢ Facteur de forme plus intense au grand vecteur de diffusion ⇒ courte longueur d'onde
➢ Diffractomètre à bras levant 6T2 LLB, mono-compteur.

Substitution de la terre rare

Solutions solides Ce_{0.7}Pr_{0.3}B₆

Ce_{0.7}Pr_{0.3}B₆: caractérisation (Mignot, Robert et al., PRB 2008)

Ce_{0.7}Pr_{0.3}B₆: Interprétation des résultats

⇒ ordres AFQs du Ce et du Pr s'établissent « indépendamment »

dipôle du Cerium :

paramagnétique? participe à l'ordre Pr?

 \Rightarrow neutrons : $(\frac{1}{2} \frac{1}{2} \frac{1}{2})$ observé si Ce para.

IC1: dipôle du Ce ordonné dans la structure Pr C et IC2: Ce/Pr décorrélés

Grande variété de phénomènes impliquant les degrés de liberté orbitaux

- Effets de dilution dans le composé (Ce,La) $B_6 \Rightarrow$ ordre octupolaire
- Compétition d'interaction dans les solution solides (Ce,Pr)B₆

Phénomènes multipolaires

•...

•nouveaux types d'ordres associés aux multipoles d'ordres élevés:

≻ordre octupolaire dans NpO₂,

≻ordre des hexadecapôles dans PrFe₄P₁₂, ...

•effet Kondo quadrupolaire ($Y_{1-x}U_xPd_3$, $PrInAg_2$, $Pr_{1-x}La_xPb_3$, ...)

•fluctuations quadrupolaires dans le supraconducteur PrOs₄Sb₁₂

Collaborations

 $Ce_{0.7}La_{0.3}B_6$

K. Kuwahara K. Iwasa M. Sera, F. Iga Institute of Applied Beam Sciencec, Ibaraki University Department of Physics, Tohoku University Department of Quantum Matter, ADSM, Hiroshima University

$Ce_{x}R_{1-x}B_{6}$, R: Pr, Nd

M. Sera, F. Iga G. André Department of Quantum Matter, ADSM, Hiroshima University Laboratoire Léon Brillouin, Saclay