GDR 3183 MICO: Matériaux et Interactions en COmpétition

Autrans, 1-4 décembre 2008

New Quantum Magnetic Phases in SrCu₂(BO₃)₂: A Route to Supersolid Phases ?

M. Horvatić

high-field NMR in Solids

Grenoble High Magnetic Field Laboratory

×

GHMFL

NMR investigation of plateaus in the $SrCu_2(BO_3)_2$ system

[K. Kodama *et al.*, Science **298**, 395 (2002) and J. Phys.: Condens. Matter **17**, L61 (2005);
S. Miyahara, F. Becca, F. Mila, Phys. Rev. B **68**, 024401 (2003); F. Lévy *et al.*, EPL **81**, 67004 (2008) and unpublished; M. Takigawa *et al.*, PRL **101**, 037202 (2008) and unpublished]

Samples:	H. Kageyama [*] Y. Ueda	* Dpt. of Chemistry, Kyoto Univ.
NMR:	K. Kodama [†] S. Matsubara [‡]	T. Waki <u>M. Takigawa</u>
	M. Horvatić C. Berthier	S. Krämer
Torque:	F. Lévy I. Sheikin	Aoyama Gakuin Univ.
Theory:	S. Miyahara** F. Becca ^{††}	J. Dorier <u>F. Mila</u>

Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan

Grenoble High Magnetic Field Laboratory, CNRS, *B.P. 166X, F-38042 Grenoble Cedex 9, France*

Institut de Physique Théorique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

GHMFL

Low-D, quantum, AF spin systems - Definition:

Heisenberg Hamiltonian: $\mathcal{H}_{H} = \sum_{i,\delta} J_{i,\delta} \vec{S}_{i+\delta} \cdot \vec{S}_{i}$ $(+ \vec{D} \cdot \vec{S}_{i+\delta} \times \vec{S}_{i} + J_{3D} \vec{S}_{i} \cdot \vec{S}_{j})$

SrCu₂(BO₃)₂: Shastry-Sutherland (plateaus, supersolid ?)

System: $S = \frac{1}{2}$, 2D, AF, frustrated, highly symmetric !

[B.S. Shastry, B. Sutherland, Physica (Amsterdam) B108, 1069 (1981)]

Shastry-Southerland

correction to localized triplets very small - starting only in 6-th order of perturbation $(J'/J)^6$

(negligible dispersion)

very small kinetic energy ($E_k \approx \hbar^2 k^2/2m$)

 \Rightarrow can easily crystallize !

[Kageyama et al., PRL 84, 5876 (2000)]

Plateaus of "fractional" magnetisation are supposed to be particularly stable, commensurate, spin-textured states.

Experimentally, due to high magnetic field involved, their magnetic structure can be accessed only by NMR !

 $^{63,65}Cu$ (I=3/2) NMR spectrum of $SrCu_2(BO_3)_2$ at 35 mK

What is expected above the 1/8 plateau, at 28 - 33 T?

2

0

T (K)

10

heat sees only the same 2D gas of 1/8 of triplets, and not the particles that carry additional magnetization !

[H. Tsujii et al., cond-mat/0301509]

Bose condensation of hard core bosons?

NMR should detect a line-splitting (into two lines) corresponding to a Néel type order !

What is expected above the 1/8 plateau, at 28 - 33 T?

F. Lévy et al., EPL 81, 67004 (2008)

H (T)

"only" 1/8, 1/4 and 1/3 ? or more ?

Sebastian S.E. *et al.*, arXiv:0707.2075

J. Dorier, K. P. Schmidt & F. Mila, arXiv:0806.3406

Theory: new fractions by Dorier, Schmidt & Mila, arXiv:0806.3406: 1/9, 2/15, 1/6, 2/9, 1/3

Plateau: field independent spin superstructure / NMR spectra

M. Takigawa *et al.*, June 2008, unpublished

 $SrCu_2(BO_3)_2$ conclusions:

[M. Takigawa et al., PRL 101, 037202 (2008) and unpublished]

Spin superstructure persists in-between "1/8" and "1/4" plateau

New plateau phases discovered: $1/8+\epsilon$ or 2/15 (?) and 1/6 (?)

NMR line-splitting in these phases: "supercell" or "quasi-supersolid" (BEC)?

NMR: simulate spectra, importance of staggered moments ...

Theory: stable structures, supersolid in presence of symmetry breaking DM terms ?