de Haas-van Alphen oscillations in underdoped and overdoped high-temperature superconductors

C. Jaudet¹, D. Vignolles¹, B. Vignolle¹, A. Audouard¹, C. Proust¹, A. Carrington², A.P. Mackenzie³, N.E. Hussey², R. Liang^{4,6}, D.A. Bonn^{4,6}, W.N. Hardy^{4,6}, L. Taillefer^{5,6}

- ¹ Laboratoire National des Champs Magntiques Pulss (LNCMP), UMR CNRS-UPS-INSA 5147, Toulouse 31400 France
- ² H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K.
- ³ School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, KY169SS, U.K.
 - 4 Department of Physics and Astronomy, University of British Columbia, $Vancouver,\ Canada$
- ⁵ Dpartement de Physique et RQMP, Universit de Sherbrooke, Sherbrooke,
 - ⁶ Canadian Institute for Advanced Research, Toronto, Canada

We report de Haas-van Alphen (dHvA) measurement in underdoped YBa2Cu3O6.5 [1] and overdoped Tl2Ba2CuO6+? [2] cuprates via a torque technique down to low temperature (0.7K) and up to high magnetic field (59T). dHvA oscillations are a thermodynamic signature of a close and coherent Fermi surface (FS). Fits to the standard Lifshitz-Kosevich theory allows the frequency (proportional to the area of the FS), the cyclotron mass and the scattering rate to be extracted. Our measurements show a drastic change in the FS topology from small pocket at low doping to large cylinder in the overdoped regime. Our measurements in association with Hall effect [4] suggest that a Fermi surface reconstruction occurs in the underdoped side of the phase diagram. Moreover, high resolution dHvA measurement displays multiple frequencies [3] which point out that c axis coherence is restored at low temperature.

- [1]: C. Jaudet et al., Phys. Rev. Lett. 100, 187005 (2008)
- [2]: B. Vignolle et al., Nature 455, 952 (2008)
- [3]: A. Audouard et al., PRL in Press
- [4]: D. LeBoeuf et al., Nature 450, 533 (2008)