Doping dependence of the lattice dynamics in Ba $(Fe_{1-x}Co_x)_2As_2$ studied by Raman spectroscopy

Ludivine Chauvière ¹, Yann Gallais ¹, Maximilien Cazayous ¹, Marie-Aude Méasson ¹, Alain Sacuto ¹, Dorothée Colson ², Anne Forget ²

¹Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot, Bât. Condorcet 75205 Paris Cedex 13, France

²Service de Physique de l'Etat Condensé, DSM/DRECAM/SPEC, CEA Saclay, 91191 Gif-sur-Yvette, France

We report Raman scattering measurements on iron-pnictide superconductor $Ba(Fe_{1-x}Co_x)_2As_2$ single crystals with varying cobalt x content. Upon cooling through the tetragonal-to-orthorhombic transition, we observe a large splitting of the E_g in-plane phonon modes involving Fe and As displacements. The splitting of the in-plane phonons at the transition is strongly reduced upon doping and disappears for x = 0.06 qualitatively following the trend displayed by the Fe magnetic moment. The origin of the splitting is discussed in terms of magnetic frustration inherent to iron-pnictide systems and we argue that such enhanced splitting may be linked to strong spin-phonon coupling.