Microscopie et Spectroscopie Tunnel à Balayage dans l'étude des systèmes à fortes corrélations électroniques

Dimitri Roditchev,

Tristan Cren, François Debontridder,

Yves Noat

Institut des NanoSciences de Paris, CNRS, University Paris 6

OUTLINE

Scanning Tunneling Microscopy (STM) and Spectroscopy (STS)

Physical background
 How to make it, how it looks like
 Spectroscopy of Superconductors
 Other strongly correlated materials

Invention du STM

Depuis 1982 : Scanning Tunneling Microscope par G. Binnig et H. Rohrer , Prix Nobel 1986

Surface Study by STM

Ag(111) at 300K

Ag(111) at 300K: Atomic corrugation 2pm

STM Controlled Growth

Pb-Morphology: 3 ML + Islands

Selection of Heights due to Z - Quantum Confinement

Nano-Writing with STM

<u>Collaboration</u>: L. Cario et al. *IMN, UMR6502, Université de Nantes*

Atomic pattern resolved by STM

Silicon: an ideal substrat

Si(111) Z: 2.4.

:23.6nm

Surface Reconstruction 7x7

Unit cell of Si(111)-7x7 DAS structure

Au-delà de la topographie STM

Empty-State Image Imaging: Vs=2V, I=0.6nA

Filled-State Image Imaging: Vs=-2V, I=0.6nA

Atomes de Co sur la surface d'Ag

T. Cren et al. EPFL Lausanne

T = 30 K (-243℃) Ultra-vide

Quantum Resonator

T = 4,2 K (-269℃) UHV

D. Eigler et col. IBM Research Division, Almaden Research Center, California,USA

site WEB: http://www.almaden.ibm.co m Ecole MICO 2010

OUTLINE

Scanning Tunneling Microscopy (STM) and Spectroscopy (STS)

Physical background
 How to make it, how it looks like
 Spectroscopy of Superconductors
 Other strongly correlated materials

STM/STS: Local Tunneling Junction

N.B. STM junction = Sample + Tip + Cable + Battery (+ Ampermeter)

Tunneling Junction at T > 0K

Local Tunneling Junction at T > 0K

<u>Local</u> Tunneling Junction at T > 0K

<u>Local</u> Tunneling Junction at T > 0K

Local Tunneling Junction at T > 0K

STM: Working principle

STM/STS : Scanning Tunneling Spectroscopy

STS: Charge Density Waves in NbSe₂ TODC = 33K

Topographic STM Image13nm x 13 nm

$$= 4,2K$$

STS: Charge Density Waves in NbSe₂ TODC = 33K

Topographic STM Image18nm x 18 nm

$$I = 4,2K$$

STS: Charge Density Waves in NbSe₂

STM/STS

T. Cren, D. Roditchev, W. Sacks (1995-2000)

N.B. Charge Density Waves are strongly perturbed by local disorder (the defects lying under surface are detectable !)

OUTLINE

Scanning Tunneling Microscopy (STM) and Spectroscopy (STS)

Physical background
 How to make it, how it looks like
 Spectroscopy of Superconductors
 Other strongly correlated materials

Microscope tunnel fonctionnant à l'air

« Easy-Scan »

commercialisé par la société Schaefer Techniques, prix <10.000 E

Electron Beam Deposition under UHV

Ultra-Low Temperatures 0.3K Magnetic Field up to 10Tesla

Ultra-Low Temperatures 0.3K Magnetic Field up to 10Tesla

OUTLINE

Scanning Tunneling Microscopy (STM) and Spectroscopy (STS)

Physical background
 How to make it, how it looks like
 Spectroscopy of Superconductors
 Other strongly correlated materials

Superconductivity: Ginzburg-Landau Approach

Superconducting phase is described by macroscopic wave function:

$$\Psi = |\Psi| \exp\left(i\varphi\right)$$

Two equations:

$$\frac{1}{2m^{\star}}(-i\hbar\vec{\nabla}-2e\vec{A})^{2}\Psi+\beta|\Psi|^{2}\Psi=-\alpha\Psi$$

$$\vec{j} = \frac{2e}{m^{\star}} |\Psi|^2 (\hbar \vec{\nabla} \varphi - 2e\vec{A}) = 2e|\Psi|^2 \vec{v}_s$$

where
$$ec{v}_s~=~(\hbarec{
abla}arphi-2\,eec{A})/m^{\star}$$

 $n_s = |\Psi(\vec{r})|^2$

Boundary condition at the sample edge:

$$(-i\hbar\vec{\nabla} - 2\,e\vec{A})\Psi\Big|_{\perp} = 0$$

Ecole MICO 2010

(1)

(2)
Superconductivity: Ginzburg-Landau Approach

Integrating the 2nd G-L equation over an area S:

$$\oint m^* \vec{v_s} \cdot \vec{ds} = \hbar \oint \vec{\nabla} \varphi \cdot \vec{ds} - 2e \oint \vec{A} \cdot \vec{ds}$$

where $\oint ec{A}.ec{ds} = \Phi$, Φ being the magnetic flux crossing S

Condition on the phase φ (since ψ is a single-valued function):

$$\oint \vec{\nabla} \varphi . \vec{ds} = n2\pi.$$

Fluxoid quantification:

$$\Phi' = \Phi + \frac{1}{2e} \oint m^* \vec{v}_s \cdot \vec{ds} = n \frac{h}{2e} = n \Phi_0$$

where Φ_0 is the flux quantum:

$$\Phi_0 = \frac{h}{2e} = 2.07 \cdot 10^{-15} \text{ Tm}^2$$

Superconductivity: Ginzburg-Landau Approach $d^* \vec{p}_s \cdot \vec{ds} = n \frac{h}{2e} = n \Phi_0$ $\Phi' = \Phi +$ $\overline{2e}$ $\Phi = n\Phi_0$ B > 0 $V_s = 0$ In type II superconductors (*k*>1) the Abrikosov vortex lattice forms, each vortex containing the flux quantum Φ_0

Superconductivity: Ginzburg-Landau Approach

Vortex Matter in Superconductors (very huge field of research!)

N.B.1 : At the distance $r |\vec{\nabla}\varphi| = 1/r$ \Rightarrow it diverges at $r = 0 (V_s \rightarrow \infty)$

N.B.2 : Flux quantification is valid over the area $S >> \pi \lambda^2$

Vortex: General Property of Rotating Quantum Condensates

Superconductors (BCS)

First image of Vortex, 1967

3 vortices in SC nano-island STM/STS, INSP, 2009

Cold atoms (BEC)

Vortex in ultracold condensate of atoms

BCS 526 \$ 1/K.3 Interaction parameter 833 0 泉 BEO

Magnetic field [G]

Quantum liquids

Vortex in superfluid He

Tunneling into a Superconductor

BCS-kind Superconductor: Gap 2Δ in the excitation spectrum:

S

Ν

$$N_{\rm s}(E) = N(0) \frac{E}{\sqrt{(E^2 - \Delta^2)}}$$

$$\frac{2 \Delta(0)}{k T_{c}} \approx 3.5$$

Pan, Davis, Univ. de Berkeley. (APL, 1998)

Abrikosov Vortex Lattice observed by Scanning Tunneling Spectroscopy (STS)

Ν

S

Vortex Lattice Study (still picture)

Vortex lattice prepared in 2H-NbSe₂ at a given magnetic field:

0.5T

0.8T

1.7T

STM/STS : Scanning Tunneling Spectroscopy

OUTLINE

Scanning Tunneling Microscopy (STM) and Spectroscopy (STS)

- 1. Physical background
- 2. How to make it, how it looks like
- 3. Spectroscopy of Superconductors \longrightarrow MgB₂
- 4. Other strongly correlated materials

Tunneling into a Superconductor

BCS-kind Superconductor: Gap 2Δ in the excitation spectrum:

S

Ν

$$N_{\rm s}(E) = N(0) \frac{E}{\sqrt{(E^2 - \Delta^2)}}$$

$$\frac{2 \Delta(0)}{k T_c} \approx 3.5$$

$$MgB_2: Tc=39K \implies \Delta(0)=6mV$$

Pan, Davis, Univ. de Berkeley. (APL, 1998)

Result on more than 10⁶ tunneling spectra locally measured:

On ~99% of spectra : Single Gap DOS: Small Gap Energy : Δ = 2.5±0.8 meV Strong « Pair-Breaking » : Γ = 0.3-0.5 meV

On ~1% of spectra (hundreds spectra): Some « strange » DOS!

???

Fit : weighted sum of two BCS DOS

STS on Granular MgB₂ : Questions

Strange » spectra are rare – are they relevant?

 \implies Why such a statistic (1%)?

→ What is the physical background of the effect?

MgB₂ is anisotropic material
↓
↓
The form of pellets:

Complex Fermi surface : 2D (ab-plane) and 3D
Orientation-dependent Tunneling!

Ecole MICO 2010

Ċ

STM Tip

STM/STS on pellets:

Local Geometry favours the tunneling into the <u>3D-band</u>

Selected : SIN spectra with different 2D/3D tunneling weights

F. Giubileo et al. Cond-mat/0105146, Europhys. Lett. (2002)

Inverted Junction Experiment

Inverted Junction Experiment

MgB₂ tip – sample of 2H-NbSe₂

320

320

Atomic pattern

CDW pattern

Point deffect

T=4.2K

Magnetic Field Dependence

 $\Delta_{\rm S}$, $\Delta_{\rm S}$ versus (B)

Experiment:
-both « gaps » are present at 2T!
- large gap resists much better

« Lazy Fisherman » Method of Vortex Study

Fishing Vortices

Scanning Spectroscopy

Ecole MICO 2010

400 nm

Fishing Vortices

Lazy Fisherman : « Novel » Method of Vortex Studying

Lazy Fisherman : « Novel » Method of Vortex Studying

Lazy Fisherman : « Novel » Method of Vortex Studying

Lazy Fisherman : <u> « Novel » Method of Vortex Studying</u>

Application to MgB₂

Profile Analysis : Size of the Vortex Cores

Lazy Fisherman : <u>« Novel » Method of Vortex Studying</u>

Application to MgB₂

OUTLINE

Scanning Tunneling Microscopy (STM) and Spectroscopy (STS)

- 1. Physical background
- 2. How to make it, how it looks like
- 3. Spectroscopy of Superconductors → HTSC
- 4. Other strongly correlated materials

Supraconductivité à haute Tc

Supraconductivité à haute Tc

« OXYDES A PROPRIETES REMARQUABLES » Aussois, 9-15 juin 2002

Supraconductivité à haute Tc

« OXYDES A PROPRIETES REMARQUABLES » Aussois, 9-15 juin 2002

Supraconductivité à haute Tc : Gap

kT_c

Jonction Nb-Au.

Pan, Davis, Univ. de Berkley.(1998)

 $Bi_2Sr_2CaCu_2O_{8+\delta}$ -Pt/Ir.

Supraconductivité à haute Tc : Dopage

 $Bi_2Sr_2CaCu_2O_{8+\delta}$ -Pt/Ir.

Ecole MICO 2010

2∆(**0**)

kT_c

≈ 5-60

Miyakawa, Zasadzinski, PRL (1999)

Pseudo-gap existe à basse température !

 Spectroscopie locale à l'échelle du nanomètre (couches minces de Bi₂Sr₂CaCu₂O_{8+δ})

PG induit par le désordre ?

Collaboration INSP-ESPCI et INSP-CRISMAT

T. Cren et al. Phys. Rev. Lett., 84, 1 (2000)

Cuprates et désordre

Trous mobiles

Potentiel coulombien Quasiment non-écranté

V(**r**)

N^{-1/2} ~ 2-3 nm

Position latérale, r

« OXYDES A PROPRIETES REMARQUABLES » Aussois, 9-15 juin 2002

Influence du désordre substitutionnel

STS sur des monocristaux de Bi_{1-x}Pb_xSr₂CaCu₂O_{8+δ}

Images LDOS 150nm x 150nm

Energie varie de –240meV à + 240meV

T.Cren, D. Roditchev et al. EPL (2001)

Influence du désordre substitutionnel

Images LDOS 150nm x 150nm

Spectres tunnels

T.Cren, D. Roditchev, W. Sacks, J. Klein, et al. Europhys. Lett. (2001)

Influence du désordre sur la supraconductivité des cuprates

Influence du désordre: 10 ans d'études en STM/STS

Cross-correlations among the simultaneously measured Z(r,V), $\Delta(r)$ and O(r) images showing a clear correlation between the gap, the oxygen and the structural disorders.

Influence du désordre: 10 ans d'études en STM/STS

Gap-map @17K, *T>Tc*

Gap-map @5K, T<Tc

Hudson et al., Nat. Phys. 3, 805 (2007)

Conclusion

STM/STS: Advantages:

Extraordinary spatial and energy resolution Quasi-direct access to the DOS and its spatial extend Possibility to explore (H,T) phase diagram

STM/STS: Weak Points:

Extreme sensitivity to the surface (states, quality etc.) Poorely controlled *k*-selectivity High electric field may be perturbative Experimentally heavy approach