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Free Electron System

Hamiltonian H = ∑∑∑∑i p i
2/(2m) - µµµµ N,  i=1,...,N. 

µµµµ is the chemical potential. N is the total particle number.

Momentum ���� k and spin σσσσ are good quantum numbers.
H = 2 ∑∑∑∑k εεεεk nk . The factor 2 is due to spin degeneracy.

εεεεk = (���� k)2/(2m) - µµµµ, is the single particle spectrum.

nk is the Fermi-Dirac distribution.   nk = 1/[eεεεεk/(kBT) + 1]

The ground state is a filled Fermi sea (Pauli exclus ion).
Fermi wave-vector kF = (2 m µµµµ)1/2.

Particle- and hole- excitations around kF have vanishingly
low energies. Excitation spectrum EK = |k2 – kF

2|/(2m).
Finite density of states at the Fermi level.
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Metals: Nearly Free “Electrons”

The electrons in a metal interact with one another with a short range repulsive
potential (screened Coulomb). The phenomenological theory for  metals was 
developed by L. Landau in 1956 (Landau Fermi liquid  theory). This system of
interacting electrons is adiabatically connected to a system of free electrons.
There is a one-to-one correspondence between the en ergy eigenstates and the
energy eigenfunctions of the two systems. Thus, for all practical purposes we 
will think of the electrons in a metal as non-inter acting fermions with renormalized
parameters, such as m →→→→ m*. (remember Thierry’s lecture)

(i) Specific heat (CV): At finite-T the volume of 
excitations ∼∼∼∼ 4 ππππ kF

2∆∆∆∆k, where E k ∼∼∼∼ (����2 kF/m) ∆∆∆∆k ∼∼∼∼ kBT. 
This gives free energy F ∝∝∝∝ – T2.
CV = γγγγ T. 

(ii) Landau Diamagnetism (χχχχL): A uniform magnetic field H affects the orbital
motion of the electrons (Lorentz force). H = ∑∑∑∑i (p i – eA/c)2/(2m). 
M = χχχχL H, χχχχL = - (e2kF)/(12ππππ2mc2). M is anti-parallel to H.
Real metals are weakly diamagnetic .

(iii) Finite resistivity (ρρρρ): Metals carry current following 
Ohm’s law E = ρρρρ J. There is a corresponding voltage 
drop V. Usually ρρρρ increases with temperature .
(remember Kamran’s lecture)
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A quick reminder: magnets, paramagnets & diamagnets

B = H + 4ππππM   (constitutive relation).

H is the external magnetic field.

M is the magnetization in a material in response to  H. 
(dM/dH) is the magnetic susceptibility ( χχχχm).

B is the “net” magnetic field in the system. Also ca lled magnetic field induction.

In a non-magnetic material (such as vacuum, M=0 no matter what) B = H.

(a) Magnet: M ≠≠≠≠ 0 even when H is zero. 
E.g.: Fe, Ni (ferromagnet)  and Cr (antiferromagnet ).

(b) Paramagnet: when χχχχm is positive. In response to H there is a M 
in the same direction.  Most metals are here.

(c) Diamagnet: when χχχχm is negative. In response to H there is a M 
in the opposite direction. Eg: Bismuth.

Electrons have two sources of M: (i) electron spin [Zeeman term H(n ↑↑↑↑ – n⇓⇓⇓⇓)]
(ii) orbital contribution: p →→→→ (p – eA/c) (remember Lorentz force).



Discovery of Superconductivity

In 1908 Heike Kamerlingh Onnes liquified He.  In 1911 he discovered superconductivity 
in Hg. For temperatures below T c ≈≈≈≈ 4K the resistance goes to zero.

Nobel Prize 1913

Can we think of a superconductor as an ideal conduc tor for which ρρρρ =0?
The answer is NO.
The response of a superconductor to a magnetic fiel d (Meissner effect) is 
different from that of an ideal conductor.



Maxwell’s Equations

1.     ∇∇∇∇····E = 4ππππ n  (Gauss’s law)

2.     ∇∇∇∇ ×××× E = - ∂∂∂∂ B/(c ∂∂∂∂ t)    (Faraday’s law of induction)

3.     ∇∇∇∇····B = 0   (no magnetic-monopole)

4.     ∇∇∇∇ ×××× B = (4ππππ/c) J + ∂∂∂∂ E/(c ∂∂∂∂ t) (Ampere’s law + Maxwell’s correction)



Conductors in a Magnetic Field

A real conductor in a magnetic field

A magnetic field induces a screening 
current [Faraday’s’ law, ∇∇∇∇ ×××× E = - ∂∂∂∂ B/(c ∂∂∂∂ t)].
In a real conductor the screening current 
decays, and in equilibrium the magnetic 
field penetrates almost entirely into the 
metal (weak diamagnetism).

An ideal conductor in a magnetic field

E = ρρρρ J = 0.
Thus, ∂∂∂∂ B/(c ∂∂∂∂ t) = - ∇∇∇∇ ×××× E =0.
B = constant, inside an ideal conductor.
The final state depends on whether the 
system was cooled below T c in the 
presence/absence of a magnetic field.



Superconductor in a Magnetic Field: Meissner Effect

Irrespective of whether the system was cooled below  Tc in the presence/absence
of a magnetic field, B = 0 inside a superconductor (a perfect diamagnet) .

This remarkable property of a superconductor was di scovered by W. Meissner
and R. Ochsenfeld in 1933.

Later we will understand it as a consequence of phase rigidity in a superconductor .



Thermodynamic property: Specific heat

TC

Specific heat of Al with T C ≈≈≈≈ 1.2 K.
N. E. Phillips, Phys. Rev. 114, 676 (1959)

(i) For T > T C, CV ≈≈≈≈ γγγγ T.

(ii) At T C the specific heat jumps (typical signature 
of a mean field type phase transition).
As T →→→→ 0, CV ≈≈≈≈ A e- ∆∆∆∆/(kBT), with ∆∆∆∆ ≈≈≈≈ 1.44 kBTC.
Evidence for an energy gap between the ground 
state and the excited states of a superconductor
(very different from a metal). 

Note: A magnetic field H = 0.03 T suppresses T C and the appearance of the
superconducting state. Sufficiently large magnetic fields destroy supercon ductivity
and brings back metallicity . 



Summary

1. A superconductor is a zero resistance state (a r esolution limited statement).

2. It is a perfect diamagnet. B=0 in the bulk irres pective of how the state was
prepared. Different from an ideal metal (perfect di amagnet only if there is 
field-after-cooling); and certainly very different from any realistic metal (weak
diamagnets).

3. Evidence of an energy gap between the ground sta te and the excited states
of a superconductor.

A superconductor is a new phase of matter compared to a metal.



London equations & the two-fluid model (1935)

For T < TC, the total density of electrons n = n s + nn.
ns = density of superconducting electrons; 
nn = density of normal electrons.
For T →→→→ 0, ns →→→→ n; and for T →→→→ TC, ns →→→→ 0.
The normal electrons conduct with finite resistance ,
while the superconducting electrons have 
dissipationless flow.

m (dv s)/(dt) = - eE (Newton’s 2 nd law). Since J = - en svs,

dJ/dt = n se2/m E                (1st London equation)

Combined with Maxwell eqn ∇∇∇∇ ×××× E = - ∂∂∂∂B/(c ∂∂∂∂t) gives ∂∂∂∂/∂∂∂∂ t [ ∇∇∇∇ ×××× J + n se2/(mc) B] =0 .
Trivially satisfied for static B and J. Thus, it do es not necessarily imply B=0 inside
a superconductor (Meissner effect).

∇∇∇∇ ×××× J + n se
2/(mc) B =0          (2nd London equation)

The 2nd London equation implies Meissner effect.

Does a perfect diamagnet imply an ideal conductor?
Derive 1 st London eqn from the 2 nd London eqn.
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B-field expulsion: London penetration depth

The London eqn ∇∇∇∇ ×××× J = - n se2/(mc)B combined with  Maxwell eqn ∇∇∇∇ ×××× B = (4 ππππ/c)J gives

∇∇∇∇2 B = ΛΛΛΛL
-2 B, ∇∇∇∇2 J = ΛΛΛΛL

-2 J,         ΛΛΛΛL = [mc 2/(4 ππππ ns e2)]1/2 (London penetration depth) .

B0

B0

B(x)

ΛΛΛΛL

Eqn: d2B/(dx 2) = ΛΛΛΛL
-2 B(x).

B(x) = B 0 e-x / ΛΛΛΛL .
Solution:

J(x) = c B 0/( 4 ππππ ΛΛΛΛL) e-x / ΛΛΛΛL .

Meissner effect : In response to B 0, the superconductor
develops a supercurrent J at the surface which scree ns 
the B-field. 

Currents & B-fields exist only within a boundary la yer of thickness ΛΛΛΛL.

How do we justify the 2 nd London equation?

Ginzburg Landau theory ......



Landau’s theory of phase transitions

A phase transition between a symmetrical high-T phase & a symmetry-broken low-T
phase is described by an order parameter (OP). The OP is zero in the symmetrical 
phase and is non-zero in the symmetry-broken phase.   Near TC the free energy can
be expressed in powers of the OP, keeping only thos e terms that are allowed by the
symmetries of the system. The equilibrium value of the OP is obtained by minimizing
the free energy with respect to the OP. 

Example: paramagnet-ferromagnet transition
Let us assume that there is strong magnetic anisotr opy and the magnetic moments 
order along the z-direction (easy axis).
In this case the relevant symmetry is time reversal symmetry .
The order parameter is M z (magnetization along z-direction).

F[Mz] = a Mz
2/2 + b Mz

4/4 + LLLL.      Why isn’t M z
3 allowed?

At the phase transition “a” changes 
sign:  a = a′′′′ (T – TC).
Below T C a spontaneous magnetization 
Mz

0 = (-a/b)1/2 develops.

F
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0

T > Tc T < Tc



Ginzburg Landau theory

The order parameter to describe the phase transition between a high-T m etallic phase
and a low-T superconducting state is a complex-valued function ΨΨΨΨ(r).

Physical meaning of ΨΨΨΨ(r)
We will learn later that the basic building blocks of a superconductor are bound pairs
of electrons (Cooper pairs). ΨΨΨΨ(r) is the wave-function describing the centre of mass
motion of a Cooper pair. All the pairs are in the same quantum state (a condensate).
A single wave-function describes the superconductin g electrons. 

ΨΨΨΨ = (ns/2)1/2 ei ΦΦΦΦ (|ΨΨΨΨ|2 gives density of superconducting electrons).

Symmetry : In a superconductor U(1) symmetry is broken. This  is associated with 
particle number conservation. F[ΨΨΨΨ] must be invariant under ΨΨΨΨ →→→→ ΨΨΨΨ ei αααα .

Homogeneous case:      F = Fn + a |ΨΨΨΨ|2 + b |ΨΨΨΨ|4/2 ,    and   a = a′′′′ (T-Tc).

Calculate the specific heat discontinuity at T c.

How to include B-field and write down the current J  in terms of ΨΨΨΨ(r)?



Ginzburg Landau theory & Meissner effect

Finite B-field produces variations in ΨΨΨΨ(r). for slow variations add a term 
c ∫∫∫∫ dV |∇∇∇∇ΨΨΨΨ(r)|2 to the free energy. Variations of the order paramet er cost energy.

GL:    c = ����2/[2(2m)]  !!  (c is not any arbitrary constant)

Note: this theory has no dynamics and is not quantu m mechanical per se. 
The notion of quantum mechanics enters through the coefficient c.

Justification: With this choice of c the term looks  like ∫∫∫∫ ΨΨΨΨ* p2/(4m) ΨΨΨΨ dV which 
is like the “kinetic energy” of an entity with mass 2m . Gives the notion of current.

Add magnetic field via gauge invariance:  p →→→→ p – 2eA/c (please note the 2e)

F = Fn(B=0) + ∫∫∫∫dV [ B 2/(8ππππ) + ����2/(4m)|(∇∇∇∇ – 2ieA/(���� c))ΨΨΨΨ(r)|2 + a|ΨΨΨΨ|2 + b|ΨΨΨΨ|4/2 ].

For low-B field n s is homogeneous.

Fs = Fs(B=0) + ∫∫∫∫dV [ B 2/(8ππππ) + ����2ns/(8m) (∇∇∇∇ΦΦΦΦ – 2eA/(���� c))2].

Note: Energy depends upon the gradient of the phase  (phase stiffness).

cont.....



cont...

Minimizing free energy with respect to A gives

∇ ∇ ∇ ∇ ×××× B = 4ππππ/c [����ens/(2m) (∇∇∇∇ΦΦΦΦ – 2eA/(����c))].

J (Maxwell eqn: ∇∇∇∇ ×××× B = 4ππππ/c J)

According to GL theory:      J = ����ens/(2m) [∇∇∇∇ΦΦΦΦ – 2eA/(����c)].

∇ ∇ ∇ ∇ ×××× J = - n se2/(mc) B, which is the 2 nd London eqn.

Summary: GL theory correctly identifies the order p arameter for the
metal-superconductor phase transition. It gives a c orrect description 
of the electromagnetic response of a superconductor , particularly the 
Meissner effect .

Note: Minimizing the free energy with respect to ΨΨΨΨ gives a 2 nd GL 
equation. This is important to study how ΨΨΨΨ(r) varies spatially in a
magnetic field or at a boundary.



Flux quantization B

C

C

B

Flux quantization is a beautiful consequence of pha se stiffness .

Imagine a metal with a hole at T > T c. Put B-field through the 
hole. The magnetic flux is ΦΦΦΦB = ∫∫∫∫ B ···· dS.
ΦΦΦΦB varies continuously as B is changed.

The situation is dramatically different in the supe rconducting 
phase. ΦΦΦΦB changes discretely as B is changed continuously!

GL eqn for current: J = ����ens/(2m) [∇∇∇∇ΦΦΦΦ – 2eA/(����c)].

Consider a closed loop C deep inside the supercondu ctor.
∫∫∫∫C J ···· dL = 0 (currents cannot exist in the bulk).

∫∫∫∫C ∇∇∇∇ΦΦΦΦ ···· dL = (2e/���� c) ∫∫∫∫C A ···· dL = (2e/���� c) ΦΦΦΦB.

Since ΨΨΨΨ(r) = (n s/2)1/2 ei ΦΦΦΦ is single valued,
∫∫∫∫c ∇∇∇∇ΦΦΦΦ ···· dL = 2 ππππn, where n is an integer.

ΦΦΦΦB = n ΦΦΦΦ0,

where ΦΦΦΦ0 = hc/(2e) is the flux quantum.

Deaver & Fairbank, PRL 7, 43 (1961).



Critical H c and type-I superconductors

Does Meissner effect (expulsion of B-field) continue  
indefinitely as external field H is increased?

The answer is NO.

For homogeneous systems there is a critical external  field H c
above which superconductivity is destroyed. These a re called 
type-I superconductors.

Thermodynamic justification
In an external field H the Gibbs free energy G(T,H) is minimized.
G(T,H) = F(T,B) – B(r) ····H/(4ππππ).

For a superconductor B=0. 
Gs(T,H) = a |ΨΨΨΨ|2 + b |ΨΨΨΨ|4/2 = - a2/(2b).

Ignoring weak diamagentism in a metal B = H. 
Gn(T,H) = - H2/(8ππππ).

Gs(T,H) –Gn(T,H) = -a2/(2b) + H2/(8 ππππ).

Hc = (4ππππ/b)1/2 a′′′′ (Tc – T).
The normal metal is thermodynamically more stable f or H > H c.
For pure metals H c is very small ( ∼∼∼∼ 0.01T).

B
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Type-II superconductors 

B

H
Hc1 Hc2

In type-II superconductors there is a mixed phase in between
the superconductor and the metal phases (H c1 < H < Hc2).

In this phase the B-field enters partially in the s ystem in the
form of thin filaments of magnetic flux. Within eac h filament 
the B-field is high (B ∼∼∼∼ H) and the material is metallic. This is
the core . A vortex of screening supercurrent circulates around 
the core. (Proposed by A. A. Abrikosov, Nobel prize  2003)

To understand the existence of the mixed phase one needs to study the boundary
between a normal metal and a superconductor and the  energy associated with it.



Coherence length ξξξξ and penetration depth ΛΛΛΛL

N S
x

x=0

ΨΨΨΨ0

ΨΨΨΨ((((x)

ξξξξ

N S

B ΨΨΨΨ

ξξξξ

ΛΛΛΛL

Variation of ΨΨΨΨ(x) at a S-N boundary

GL eqn:  -����2∇∇∇∇2/(4m)ΨΨΨΨ + aΨΨΨΨ + bΨΨΨΨ3 =0.
Near boundary ΨΨΨΨ ≈≈≈≈ 0, well inside S  ΨΨΨΨ =ΨΨΨΨ0 = (-a/b)1/2.
Writing ΨΨΨΨ = ΨΨΨΨ0 - ΨΨΨΨ1(x), we get ΨΨΨΨ1(x) = ΨΨΨΨ0 e-√2 x/ξξξξ.
ξξξξ = ����/2(m|a|)1/2 ∝∝∝∝ (Tc –T)1/2. (coherence length)

Implicit in the GL eqns are two length scales:
ΛΛΛΛL & ξξξξ both proportional to (T c–T)-1/2 . ξξξξ is the scale
over which ΨΨΨΨ varies and ΛΛΛΛL is the scale over which 
B-field varies.

In an external field H c the bulk Gibbs free energies are 
equal G s(Hc) = Gn(Hc) = - Hc

2/(8ππππ) . Boundary is stable.
The surface energy is

magnetic      condensate     no boundary
energy             energy

For ξξξξ < √2 ΛΛΛΛL boundaries are energetically favourable. Gives type -II superconductors.



Josephson Effect

If two superconductors are separated by a thin 
insulating layer, there is tunneling of Cooper pair s
which sets up a dissipationless current.

I = I0 sin[ ΦΦΦΦ2 - ΦΦΦΦ1] (DC Josephson effect)
ΦΦΦΦ1 ΦΦΦΦ2

S vac

n No current flows perpendicular to the boundary:

n ···· [ -i ����∇∇∇∇ΨΨΨΨ – (2e/c) A ΨΨΨΨ] = 0

gauge invariant momentum

S1 S2

∂∂∂∂ ψψψψ1/(∂∂∂∂ x) - 2ie/(����c) Ax ΨΨΨΨ1 = -ΨΨΨΨ2/λλλλ

∂∂∂∂ ΨΨΨΨ2/(∂∂∂∂ x) -2ie/(���� c) Ax ΨΨΨΨ2 = ΨΨΨΨ1/λλλλ

x
Put this relation in the equation for current.

J = J0 sin( ΦΦΦΦ2 - ΦΦΦΦ1)



cont...

In the presence of a finite voltage across the junc tion 
the phase difference increases linearly in time.

V = ����/(2e) ∂∂∂∂[ΦΦΦΦ2 - ΦΦΦΦ1]/(∂∂∂∂ t)

In the presence of a finite voltage the supercurren t
oscillates in time with frequency 2eV/ ����.

From flux quantization condition
ΦΦΦΦB - ΦΦΦΦA = 2ππππ ΦΦΦΦB/ΦΦΦΦ0

ΦΦΦΦB

Differentiate with respect to time:
∂∂∂∂[[[[ΦΦΦΦB - ΦΦΦΦA]/(∂∂∂∂ t) = 2ππππ/ΦΦΦΦ0 ∂∂∂∂/(∂∂∂∂ t) ∫∫∫∫ B ···· dS

= (2e/����)V
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Beginning of a microscopic theory: Cooper problem

The ground state of electrons interacting repulsive ly is adiabatically connected to 
the ground state of a system of free electrons. Pau li principle has a profound effect.
What happens when electrons attract each other?
In 1957 Leon Cooper discovered that the situation i s qualitatively different:
even for a small attractive force the Fermi surface becomes unstable! 

Cooper problem
Imagine a system of N non-interacting electrons for ming
a Fermi sea (FS). In this background if two electrons inter-
act attractively , what is the ground state eigen-function & 
eigen-energy?

With no interaction ΨΨΨΨ(r1, r2) ∼∼∼∼ eik1r1 eik2r2 ; |k 1| = |k2| =kF.
E = 2EF and wavefunction is plane-wave like.

Cooper’s answer
The two electrons form a bound state with
net momentum zero.
E = 2EF - ∆∆∆∆, ∆∆∆∆ is binding energy.
ΨΨΨΨ((((r) →→→→ 0,  as r →→→→ ∞∞∞∞.
ΨΨΨΨ((((r) has a spatial extent ξξξξ0 = ����vF/∆∆∆∆ ....
ξξξξ0 = Pippard coherence length.

FS

-V

e-

e-

What is the ground state?

ΨΨΨΨ((((r)

r

ξξξξ0

Bound state wavefunction

FS

-V

p

-p

With attractive interaction two
electrons form a bound state



Cooper pair formation: eigen-value problem

ΨΨΨΨ((((r1, r2) = two-electron wavefunction. Assume attractive in teraction is V(r 1–r2).

R = (r1 + r2)/2 = centre of mass coordinate; r = (r 1–r2) = relative coordinate.
Separable: ΨΨΨΨ(r1,r2) = ΨΨΨΨ(r) ΦΦΦΦ(R).

In the R-coordinate there is no interaction, ΦΦΦΦ(R) = ei P····R , P = total momentum.
Ground state should have zero total momentum, ΦΦΦΦ(R) =1.
(N+2)-body problem →→→→ (N+1)-body problem.

[-����2/(2m)(∇∇∇∇1
2 + ∇∇∇∇2

2) + V(r) ] ΨΨΨΨ(r1–r2) = E ΨΨΨΨ(r1–r2)
Is this a 1-body problem? 
Where is information about the remaining N-electron s?

ΨΨΨΨ((((r1-r2) = ∑∑∑∑k g(k) exp[i k ····(r1-r2)].
g(k) = probability amplitude to find one electron i n the plane-wave state 
exp[ik ····r1] with momentum ����k, and a 2 nd electron in the state exp[-ik ····r2] 
with momentum - ����k.

g(k) = 0,   for k < k F.

Pauli principle takes care of the N-electrons. Makes  the problem truly 
many-body. Qualitatively different from standard 2- body bound state 
problems.



cont...

Fourier transform the interaction:   Vkk ′′′′ = ∫∫∫∫ d3(r1–r2) V(r1–r2) exp[-i(k-k ′′′′ )····(r1–r2)]
Vkk ′′′′ = scattering amplitude of a pair (k, -k) →→→→ (k ′′′′, -k ′′′′).
Due to the presence of the attractive interaction, the
relative momentum is not a good quantum number.

����2k2/m g(k) + ∑∑∑∑k
′′′′ Vkk ′′′′ g(k ′′′′) = E g(k).

Simplify interaction: 
Vkk ′′′′ = -V,      for    E F < ����2 k2/(2m), ����2 k ′′′′2/(2m)  <  EF+����ωωωωD

=  0,       otherwise.
The interaction is attractive & constant in an ener gy 
interval ����ωωωωD. Later we will identify ����ωωωωD as a typical 
energy scale of the phonons.

Write E = 2EF + ∆∆∆∆,   where ∆∆∆∆ is binding energy given by:

N0 = Density of states at E F

∆∆∆∆ ≈≈≈≈ -2 ���� ωωωω
D

exp[-2/N
0
V].         The two electrons form a bound state and gain energ y

∆∆∆∆ compared to plane-wave states at k_F. So they 
prefer to disregard the Fermi wavevector!

k

-k

k ′′′′

-k ′′′′

Vk k ′′′′

k

E(k)

EF

EF+���� ωωωωD



Comments on Cooper pairing

1. The binding energy ∆∆∆∆ ∼∼∼∼ exp[-2/N 0V] is non-analytic function of V.
The problem is intrinsically non-perturbative.

2. The bound state forms even for very small V! Thi s is a consequence of
it being a many-body problem rather than a two-body problem.

For the two-body problem no Fermi surface, i.e., k F = 0. Then  N(ξξξξ) ∝∝∝∝ ξξξξ1/2,
1 = V ∫∫∫∫ ξξξξ1/2 d ξξξξ / (2 ξξξξ - ∆∆∆∆), is satisfied only for sufficiently large V (the log
singularity is lost).

3. What about the spin of the two electrons? 
We assumed V(r) is spin independent. Total spin is a good quantum number.

g(k) = C/(E- ����2k2/2m)  ⇒⇒⇒⇒ g(-k) = g(k).
The spatial part of the Cooper wavefunction is symme tric under  r 1 ↔↔↔↔ r2.
The spin part must be antisymmetric.
χχχχspin = (↑↑↑↑ ⇓⇓⇓⇓ - ⇓⇓⇓⇓ ↑↑↑↑)/√2, i.e., S=0 (singlet).

4. The average size of a Cooper pair is given by 
the Pippard coherence length ξξξξ0 = ���� vF/∆∆∆∆.

<r2> = (∫∫∫∫ d3 r | ΨΨΨΨ(r) |2 r2 )/ (∫∫∫∫ d3 r |ΨΨΨΨ(r)|2) = 2 ξξξξ0/√3.



How to generalize Cooper’s answer?

The Cooper problem showed us that when two electron s interact attractively
in the presence of a Fermi sea (filled by N other e lectrons), they form a bound state.

How to generalize this idea for N-electrons? How to  treat them all in the same way?

Note: In Cooper’s treatment the two electrons are d istinguishable from the remaining
electrons forming the FS. The wavefunction is not an tisymmetrized between a “soup”
electron and a “chosen” electron.

Within one year of Cooper’s work, in 1957 John Bard een, Leon Cooper and Robert 
Schrieffer generalized the Cooper solution. With thi s the microscopic theory of SC 
was born. Nobel prize 1972.

J. Bardeen L. Cooper R. Schrieffer



Variational Idea

Hamiltonian (H): A system of electrons with kinetic energy
p2/(2m) (H0) and a two-particle attractive interaction (V). The 
interaction is “on” only for electrons within an ene rgy range 
����ωωωωD of the Fermi energy.

We will try to find the ground state using variational method.

Strategy
1. We will propose a trial wavefunction ΨΨΨΨ( αααα, ββββ....) in terms of parameters αααα,,,, ββββ etc.

2. We will calculate average energy E( αααα, ββββ) = < ΨΨΨΨ | H | ΨΨΨΨ >.

3. We will fix the parameters αααα, ββββ etc by minimizing E:  ∂∂∂∂E/(∂∂∂∂ αααα) =0.

Justification
If our initial guess is good ΨΨΨΨapp will have a lot of overlap with the 
exact ground state wavefunction ΨΨΨΨex, i.e., < ΨΨΨΨapp | ΨΨΨΨex > ≈≈≈≈ 1.

We will know the guess is good if we can explain experimental facts.

����ωωωωD����ωωωωD

EF

e-

e-



ΨΨΨΨ - cookbook

ΨΨΨΨ
A natural generalization of Copper’s solution is to  pair
N-electrons keeping the centre of mass momentum zer o.

Let us 1 st pair two electrons, 1 & 2, in a state ΦΦΦΦ(r1–r2; σσσσ1 σσσσ2).
We assume ΦΦΦΦ is antisymmetric under 1 ↔↔↔↔ 2.

Next we pair electrons 3 & 4 in the same state ΦΦΦΦ, i.e.,
ΦΦΦΦ((((r3–r4; σσσσ3 σσσσ4).

And so on ...

ΨΨΨΨN = A [ΦΦΦΦ(r1 – r2; σσσσ1 σσσσ2) ΦΦΦΦ(r3 – r4; σσσσ3 σσσσ4) LLLL]        

Expand ΦΦΦΦ in Fourier series: ΦΦΦΦ(r1–r2) = ∑∑∑∑k g(k) exp[ik ····(r1–r2) (↑↑↑↑ ⇓⇓⇓⇓ - ⇓⇓⇓⇓ ↑↑↑↑)/√2.

To be consistent :  g(k) = g(-k)

ΦΦΦΦ((((r1 – r2; σσσσ1 σσσσ2) = ∑∑∑∑k g(k) [ | k ↑  ↑  ↑  ↑  ; -k⇓⇓⇓⇓> - |k⇓⇓⇓⇓ ; -k↑↑↑↑ >]/√2. = ∑∑∑∑k g(k) |1,1> k = ∑∑∑∑k g(k) c ††††
k ↑↑↑↑ c††††

-k ⇓⇓⇓⇓ |0>

Note: Unlike the Cooper problem the sum over k is over all momenta.

singlet

|1,1>k

plane waves (k, -k)



cont...

ΨΨΨΨN = ∑∑∑∑ k1
LLLL kN/2

g(k1) LLLL g(k N/2)  [ |1,1>k1
⊗⊗⊗⊗ |1,1>k2

LLLL |1,1>kN/2
]

Turns out that for technical reasons it is difficult to work with 
wavefunctions with fixed number of pairs. 

BCS recipe
Write a wavefunction which is a linear superposition of states with
1, 2, LLLL, N, LLLL, ∞∞∞∞ number of pairs.

ΨΨΨΨBCS = λλλλ2ΨΨΨΨ2 + λλλλ4ΨΨΨΨ4 + LLLL + λλλλNΨΨΨΨN + LLLL

= ∏∏∏∏all k [ u k |0,0>k + vk |1,1>k ]   = ∏∏∏∏k (uk + vk c††††
k ↑↑↑↑ c††††

-k ⇓⇓⇓⇓)|0>

Either the pair of states (k, -k) is unoccupied with probability amplitude u k,
or both are occupied with probablility amplitude v k. (uk, vk) are variational
parameters we will determine. 
uk

2 + vk
2 = 1 (normalization);  (u -k, v-k) = (uk, vk) (even parity)

Note: u k = 1 for |k| > k F , vk = 1 for |k| < k F, and all else zero gives the 
ground state of non-interacting electrons (the fill ed Fermi sea).



Does it make physical sense?

ΨΨΨΨBCS is a wavefunction which is a superposition of states with different particle
numbers. Is this physical?

--- in a truly isolated system this is indeed unphys ical.

--- most experimental setups are “open” systems, such  as a metal with current
leads. Then particle number can fluctuate.

ΨΨΨΨBCS = ∑∑∑∑N λλλλN ΨΨΨΨN

The probability | λλλλN|2 is sharply peaked around N 0,
the average particle number.

<ΨΨΨΨBCS| O | ΨΨΨΨBCS> = <ΨΨΨΨN | O |ΨΨΨΨN> + (1/√N)-corrections 

In the thermodynamic limit they give the same resul t. N

|λλλλN|2

N0

√N0

Probability | λλλλN|2 is sharply peaked



BCS equations at T=0

In ΨΨΨΨBCS the probability for occupying the state k (and –k) is v k
2.

<H0> = <ΨΨΨΨBCS|H0|ΨΨΨΨBCS>  = 2 ∑∑∑∑k ξξξξk vk
2 ,    ξξξξk = energy of state k measured from µµµµ.

How to calculate <V>?

V describes scattering of a pair from (k, -k) to (k ′′′′, -k ′′′′)
as well as scattering of unpaired electrons. But on ly the 
1st type of scattering enter <V>. 

Before the scattering (k, -k) is full while (k ′′′′, -k ′′′′) is empty. Gives the amplitude (v k uk′′′′). 
After scattering (k, -k) is empty while (k ′′′′, -k ′′′′) is full. Gives the amplitude (u k vk′′′′).

<V> = <ΨΨΨΨBCS | V | ΨΨΨΨBCS> = ∑∑∑∑k, k ′′′′ Vkk ′′′′ uk vk uk′′′′ vk′′′′.

We discover the existence of a new quantity called the gap function ∆∆∆∆k,
and an associated energy Ek = (ξξξξk

2 + ∆∆∆∆k
2)1/2.

uk
2 = (1 + ξξξξk/Ek)/2 and vk

2 = (1 - ξξξξk/Ek)/2.

∆∆∆∆k is given by the famous BCS gap-eqn at T=0:         ∆∆∆∆k = - ∑∑∑∑k
′′′′ Vk k

′′′′ ∆∆∆∆k
′′′′ /(2 Ek

′′′′ ).

A normal state is ∆∆∆∆k =0, and a SC is ∆∆∆∆k ≠≠≠≠ 0.

k

-k

k ′′′′

-k ′′′′

Vk k ′′′′



Physical Consequences

k

εεεεk

µµµµ

µµµµ - ���� ωωωωD

µµµµ + ���� ωωωωD

1. Simple model:

Vkk ′′′′ =  -V     for     | ξξξξk|, |ξξξξk′′′′ | < ����ωωωωD

=   0                outside  

Interaction is isotropic ⇒⇒⇒⇒ ∆∆∆∆k = ∆∆∆∆0.

∆∆∆∆0 ≈≈≈≈ 2 ���� ωωωω
D

exp[-1/N
0
V]

Any finite attractive interaction opens a gap.

2. The ground state energy difference between SC ( ∆∆∆∆ ≠≠≠≠ 0) and the normal state ( ∆∆∆∆ =0) is
ES – EN = - N0 ∆∆∆∆

0
2/2 

Lowering of energy due to Cooper pairing.

3. The electrons with opposite momentum pair up in bound states. The concept of 
a FS is destroyed. What remains is the concept of a chemical potential .

4.  The occupation probability is n k = vk
2.

The concept of a FS is smeared out. 
SC involves electrons around k F within a width 1/ ξξξξ

0
.

kF

k

nk

1

0

N

SC
1/ξξξξ0



Meaning of the gap ∆∆∆∆k

k
kF

∆∆∆∆0

Ek

ξξξξk

1. Simplest excitation: Obtained by breaking a pair.
Either remove (k ↑↑↑↑) or (-k, ⇓⇓⇓⇓).

Excitation energy = Loss of binding energy of (k ↑↑↑↑, -k⇓⇓⇓⇓) 
pair + gain in KE of single e - at k.

Loss = - [ 2 ξξξξkvk
2 + 2 ∑∑∑∑kk ′′′′ Vkk ′′′′ ukvk uk′′′′ vk′′′′ ],     Gain= ξξξξk

Excitation energy = E k = (ξξξξk
2 + ∆∆∆∆

k
2)1/2 (Bogoliubov modes)

2. Density of states (DOS): The gap shows in the 
density of states (can be measured by tunneling 
spectroscopy) ---- remember the course of 
D. Roditchev.

NS(ωωωω) = 0     for ωωωω < ∆∆∆∆

= N0 ωωωω/(ωωωω2 - ∆∆∆∆2)1/2 for  ωωωω > ∆∆∆∆

Gap in single particle excitation spectrum

µµµµ

ωωωω∆∆∆∆

N(ωωωω)

gap in DOS

N0

µµµµ



cont...

ωωωω

N(ωωωω)

DOS of an insulator

ωωωω∆∆∆∆

N(ωωωω)

gap in DOS

N0

gap in DOS

DOS of a superconductor

Even in an insulator an energy gap opens in the sin gle particle spectrum.
How is a superconductor different from an insulator ?

In an insulator ∂∂∂∂N/(∂∂∂∂ µµµµ) = 0.
Is this also true for a superconductor?



cont...

kF (kF + δδδδkF)

∆∆∆∆

The BCS gap ∆∆∆∆ is tied to the chemical potential. It does not chan ge
with the chemical potential.

∂∂∂∂ N/(∂∂∂∂ µµµµ) ≠≠≠≠ 0. (It takes the value of the normal state)



BCS theory at finite T

1. BCS gap eqn (obtained by minimizing the free ener gy and not 
just the ground state energy) at finiteT:

∆∆∆∆k =  - ∑∑∑∑k′′′′ Vkk ′′′′ ∆∆∆∆k′′′′/(2Ek′′′′) [1 – 2 f(E k ′′′′)],         f(E) = 1/(exp[E/k BT] +1)

This makes ∆∆∆∆k T-dependent. T c can be calculated using the gap eqn.

(kBTc)/∆∆∆∆ ≈≈≈≈ 0.5.

2. Entropy S = -2k B ∑∑∑∑k [ (1-f k) Log(1-f k) + fk Log f k]

C = T dS/dT ∝∝∝∝ exp[- ∆∆∆∆/(kBT)], at the lowest temperature.



Attractive interaction: role of phonons

Isotope effect (1950): Tc ∝∝∝∝ 1/√M.
M = mass of the ions forming the lattice.

The lattice plays a role in establishing SC.

When an e - moves away from a region it leaves
behind a net +ve charge. The lattice tries to adjust
but it moves very slow compared to the electrons.
The net +ve charge attracts a 2 nd e- in the vicinity.

D(ωωωω, q) ≈≈≈≈ 1/(ωωωω2 - ωωωωq
2).    For small ωωωω, , , , D < 0.



Persistent current

1. In ΨΨΨΨBCS we pair states with equal & opposite momenta (k ↑↑↑↑, -k⇓⇓⇓⇓).
A Cooper pair has zero centre of mass momentum.

2. Let us give a momentum boost to all els -. ����k →→→→ ����k + p.
This is steady current-carrying state J = nep/m.

3. In this state Cooper pairs form between (k+p/ ���� ↑↑↑↑, -k+p ⇓⇓⇓⇓), i.e., 
between electrons with relative momentum 2 ����k just as in p=0 
case. Since the bound state formation and the gain in binding 
energy takes place in the relative coordinate, all the earlier 
arguments are still valid. Therefore, value of gap ∆∆∆∆ is unchanged 
even though p ≠≠≠≠ 0.

4. The only cost of energy by creating the current state is p 2/(2m)
per electron. As long as the KE is less than the bi nding energy,
ΨΨΨΨBCS(p) is still the ground state with els - in pairs.

5. In a normal metal the source of resistance is sc attering with
k →→→→ –k (back-scattering). In a SC for this to happen on e has to 
1st break the pairs. This costs energy ∆∆∆∆. For T < ∆∆∆∆, the only available 
excitations are modes ���� ωωωω ∼∼∼∼ T. These modes do not have enough 
energy to break the pair. The current state cannot decay momentum. 



Beyond BCS
“The theory of Bardeen Cooper and Scrieffer - the BCS theory - has explained so much 
that we can say that we now understand the supercon ducting state almost as well as we 
do the ‘normal’ state” ----- J. Ziman, 1963, Principles of the theory of Solids  

Surprises:

1. Discovery of superconductivity in the rare earth  compound CeCu 2Si2. Tc ≈≈≈≈ 0.5 K.
Should not be superconducting according to BCS logi c. 

2. In 1986 Bednorz & Müller discovered superconductiv ity in Ba-La-Cu-O. T c ≈≈≈≈ 30 K. 

Steglich, et al, PRL 43 , 1892 (79)
Bednorz & Müller, Z. Phys B 64, 189 (86)



Latest excitement: Fe-based superconductors

Kamihara et al, J. Am. Chem. Soc 130, 3296 (08) Ren et al, Chin. Phys. Lett. 25, 2215 (08)

TC ≈≈≈≈ 55K

Several classes: ReOFeAs [Re = La, Ce, Sm...]; AeFe 2As2 [Ae = Ba, Sr, Ca]; 
MFeAs [M = Li, Na]; FeCh [Ch = Se, Te].

Motivation to look beyond the standard BCS paradigm ....



Superconductivity in unconventional situation

Conventional = Situation where electron-phonon medi ated BCS type superconductivity
theory & and its strong coupling generalization wor ks.

What are the various ingredients in the BCS theory?  
We can think of unconventionality arising due to th e lack of one or more of those
ingredients.

Causes of unconventionality

1. Multiband system
E.g. : MgB 2, Fe-based pnictide superconductors.
MgB2 is a two-band superconductor (T c ≈≈≈≈ 39 K). Everything else is conventional.
The bands have two different gap functions ( ∆∆∆∆1 ≈≈≈≈ 10 ∆∆∆∆2), both s-wave.
But a single transition temperature (can be understood from symmetry).
Choi et al, Nature 418, 758 (02).

2. Other bosonic (non-phonon) excitation mediated super conductivity
E.g. : Spin fluctuation mediated pairing in superflu id He-3. Possibly in Sr 2RuO4.
What about the cuprates?
Spin fluctuation = collective excitations of the fe rmions. An electron can spin polarize 
the medium locally. A 2 nd electron with the same spin alignment gets attracte d if the 
interaction is ferromagnetic.  



Causes of unconventionality (cont.)

3. Anisotropic gap function ∆∆∆∆k (non s-wave)
The interaction V kk ′′′′ can depend on the angle k ····k ′′′′. 
Vk k ′′′′ = ∑∑∑∑l Vl Pl (cos θθθθ). Vl (l ≠≠≠≠ 0) can be the dominant interaction.

E.g. : (i) The cuprate superconductors have d x2-y2 (l=2) gap 
symmetry. ∆∆∆∆k = ∆∆∆∆0 (cosk x – cosk y). Gives rise to nodes where 
gap vanishes and low-energy excitations are  possib le. 
Ek = (εεεεk

2 + ∆∆∆∆k
2)1/2. The physics of nodal excitations can be 

important.

(ii) p-wave pairing in He-3 and possibly in Sr 2RuO4.

4. Triplet pairing (S=1)
E.g. : He-3, and Sr 2RuO4.

In standard BCS the Cooper pairs form a spin single t (S=0).

For S=1 and L=1, 9 independent order parameters to play
with! Non-trivial spin susceptibility is expected at least along
certain directions of the applied field. In a singl et super-
conductor the spin susceptibility is zero as T →→→→ 0.

dx2–y2 gap symmetry

T-dependence of Knight shift
Ishida et al, Nature 396 , 658 (98)



Causes of unconventionality (cont.)

Crystal structure of CePt 3Si
No c →→→→ –c symmetry

5. Lack of symmetry (broken spontaneously or otherw ise)

E.g. (i): Non-centrosymmetric superconductors such as 
CePt3Si (Tc ≈≈≈≈ 1K), CeRhSi 3, CeIrSi3. These systems lack 
inversion symmetry , which produces spin-orbit coupling
of the form e.g., (p ····σσσσ)))). Since parity is not a good quantum 
number the ground state wavefunction has no definite  
parity. Singlet & triplet Cooper pairs coexist.

Muon spin relaxation rate. Evidence of 
additional magnetic scattering below T c
Luke et al, Nature 394 , 558 (98)

E.g. (ii): Spontaneous breaking of time reversal symmetry
in Sr 2RuO4. ∆∆∆∆(k) = (k x + i k y)(| ↑↑↑↑ ⇓⇓⇓⇓> + |⇓⇓⇓⇓ ↑↑↑↑ >) as in A-phase
of He-3. L z=1, and S z=0. Gives rise to exotic electro-
magnetic properties.

In standard BCS pairing is between time reversed pa irs
|k ↑↑↑↑ > and |-k ⇓⇓⇓⇓>. Non-magnetic impurities do not have
affect superconductivity (if s-wave)—Anderson’s the orem.



Causes of unconventionality (cont.)

6. Coexistence of superconductivity with other type s of order

(i) SC coexisting with antiferromagnetism , such as 
heavy fermions CeCu 2Si2 doped with Ge, CeRhIn 5, CeIn3 
(arXiv:0201040, arXiv:0908.3980 ), newly discovered 
Fe-pnictide BaFe 2As2 when doped.

(ii) coexistence with ferromagnetism such as UGe 2, URhGe,
UCoGe;  singlet or triplet? homogeneous or modulati ng orders?

(iii) coexistence with charge ordering as in NbSe 2.

These orders usually compete with one another. In t he coexistence
regime how do they affect one another?

Phase diagram of BaFe 2As 2
Laplace et al, EPJB 73 , 161 (10)



Causes of unconventionality (cont.)
7. Effects of strong correlation
Strong correlation = effects of interaction cannot be understood perturbatively.
The parent metallic state itself is unusual. Does t he BCS mechanism work even
if the metal is not a Landau Fermi liquid?
E.g. : (i) heavy fermions, where superconductivity is often near a QCP;
as in CeCu 2Si2, CeCu2Ge2, CePd2Si2.
(ii) the CuO based high temperature superconductors.  

doping 
0 0.1 0.2 0.3

TN
strange metal

Pseudogap
phase

Fermi
Liquid

AF

Tc

T*

superconducting
dome

T

M
ot

t i
ns

ul
at

or
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Fundamental puzzles of the cuprates
(i) why SC develops in the vicinity of an interaction-driven (Mott) insulator and an AFM?
(ii) why is Tc so high?
(iii)  how to understand the unusual metal-phase and its relation with SC?

schematic phase diagram
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