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Broken symmetries

Uniaxial ferromagnet m: magnetization

Free energy F(m) has a m -m symmetry

but the values +/- m0 which minimizes F breaks this symmetry.

m

F(m)

T>Tc

symmetric phase

T<Tc

(spontaneously) broken symmetry phase

2-fold degenerate minimum

F(m)

m

At T=Tc → singularity in the free energy (exercice using F(m)=a(T-Tc)m2+m4)
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Which one is the most symmetric ?

Solid Liquid

 A “snapshot” of the solid looks more symmetric

 But… a statistical ensemble, the liquid is more symmetric

 Example: the average particle density n(r) is spatially uniform in the liquid, not in the solid

 The less symmetric phase (i.e. the solid) has some long-ranged order
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Plan

 Introduction
 Modèles, Hamiltoniens et symétries, définitions
 Exemples simples de symétries brisées en physique statistique 

classique et quantique

Paramètres d'ordre
 définition(s)
 exemples (et contre exemples!)
 Un tout petit peu de théorie des groupes (& représentations)
 Fonctions de corrélation, ordre à longue portée, susceptibilités
 Théorie de Landau

 Brisure spontanée de symétries continues
 Modes de Goldstone
 Théorème de Mermin-Wagner:
 Invariance de Jauge & mécanisme de Higgs

 Systèmes de taille finie
Signature dans le spectre d’une brisure de sym., nombres 

quantiques, etc. 



5G. Misguich,  June 2010, Aussois

Models and symmetries, examples
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Notations

 H: Hamiltonian (a priori quantum, but may be classical too)

G: symmetry group.

 Group elements act on states g |i>=|g(i)>       (unitary g-1=g+)

 Equivalently, group elements act on operators/observables: 

 g is a symmetry of H  g-1Hg = H   [g,H]=0
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Symmetries - simplest examples

 Example1: spin & rotations

 Example 2: Atoms in a solid. 

Translation gR : shifts the particle positions ri→ri+R; 

Corresponding operator: 
[proof: check on plane waves]

ri->ri+R does not change H P=Σjpj is conserved]

 Solid state is not invariant under ri→ri+R, contrary to liquids.
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Classical Ising model: Z2 sym. breaking & thermodynamic 

limit

 Ising model

 Spontaneously broken in the low-temperature phase (d≥2):

Warning: thermodynamic limit required !

If the number of spins is finite → <σ>=0 at any temperature…

The proper way to measure a “spontaneous” magnetization is:
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Jahn-Teller distorsion

Describes the atoms positions in a solid in terms of the deviation from their 

(high-temperature) equilibrium positions, which are assumed to form a regular 

(say cubic) lattice

3 spatial directions are equivalent

V: complicated…:

-electrostatic interactions between electronic clouds

-electron kinetic energies;

Electronic configuration & 3d orbitals

Spontaneous selection of one particular direction (driven by electronic energy gain)

Reduction of the lattice symmetries

δi
δj
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Bose-Einstein condensation (bosons)
 Bose-Hubbard model

 Bose condensation: non-zero expectation value of the creation/annihilation operator 

associated to the condensed (often k=0) mode

 φ = “phase of the condensate”.  Spontaneous break down of the U(1) symmetry

 But … what is the symmetry gφ which rotates the phase φ ?
Looking for g which satisfies 

Operator which changes the phase :

Particle conservation.

What is the difference with the previous examples ?

φ cannot be observed directly. It is “immaterial”.
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Bose-Einstein condensation of magnons

 Spin-½ Heisenberg model on a lattice made of  coupled « dimers »

 Spin dimer /boson dictionary: 

 Singlet : empty site

 Triplet Sz=+1 : occupied by one boson

 h=ext. mag field (||z)  boson chemical potential

 Strong enough ext. field: Bose condensation (of magnons)

Review: Giamarchi et al. 2008

→Long-ranged magnetic order in the plane perp. to the external mag. field.
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http://arxiv.org/abs/0712.2250
http://link.aps.org/doi/10.1103/PhysRevB.63.172414
http://link.aps.org/doi/10.1103/PhysRevB.63.172414
http://link.aps.org/doi/10.1103/PhysRevLett.93.087203
http://link.aps.org/doi/10.1103/PhysRevLett.93.087203
http://link.aps.org/doi/10.1103/PhysRevLett.93.087203
http://link.aps.org/doi/10.1103/PhysRevLett.93.087203
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Order parameters
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What is an order parameter ?

 idea: An order parameter is an observable which allows to detect if a 

symmetry is broken or not.

 T=0 

A local observable O is an order for the symmetry g if:

<x|O|x>=0 when the symmetry is not broken (g|x>~|x>, up to a possible phase)

<x|O|x>≠0 when the sym. is broken.

O is local, or a sum of local terms;

 Remark: to get an observable which expectation value vanishes in any 

symmetric state, use:

 T>0

A local observable O is an order for the symmetry g if:

<O> (thermal average) when the symmetry is not broken, and <O> can be 

non-zero when the sym. is broken.
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Example of order parameters: quantum Ising model
 Ising model in transverse field

 remarks: exactly solvable in 1d (spin chain, using Jordan-Wigner transf.)

relevant to describe LiHoF4 (then Jij:= dipolar, long-ranged)

CsCoCl3, K2CoF4

What is the symmetry group ?

 Lattice symmetries (depends on Jij)

 global spin flip: σz → -σz. Operator

 Natural order parameter :

 Small  h : <mz> ≠0, large  h: <mz>=0.

 Exercise: show that g|x>~|x> implies <x|σz|x>=0

 Is  σx also an order parameter  ? No ! i
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http://prb.aps.org/pdf/PRB/v70/i14/e144411
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Spin Peierls

 Quantum spins coupled to an « elastic » lattice

 Spontaneous « dimerization »

(magnetic energy gain > elastic energy cost)

 Examples of order parameters (translation symmetry breaking)

 Dimerized phase: spin gap Δ for magnetic excitations.

Is Δ an order parameter ?
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Néel (antiferromagnetic) orders
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symmetry breakings. 
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Long-range order, correlation functions & susceptibilities

 Spontaneous symmetry breaking  <Or Or’> is long-ranged

 Take a large but finite system.

How can we measure if we are in the ordered or disordered phase ?

Problem <O>=0 in both phases (since the system is finite).

Solution: Compute <Or Or’> for sufficiently distant spins

If it does not decay to zero at large distances → broken symmetry phase.

 Structure factor:

O=Σr Or , O2= Σrr’ Or Or’ <O2>=N Σr <O0 Or>  LRO  <O2>~N2

If O=S(q), <O2> is accessible through neutron scattering for instance.

|S(q)|~N2 gives Bragg peaks. 

One can also look at the susceptibility   H → H(λ)=H – λ.O

χ =d<O>/dλ (taken at λ=0) = <O2> / T

 χ diverges as N^2  LRO

 Remark: one can also define χ=[ <O2> - <O>2]/T, in which case

χ is finite in both phases, and only diverges at the transition.
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(a little bit of) Group theory

 Symmetry group G   (finite for simplicity)

 An observable O

 One can generate other observables by acting with the symmetry operations

 Chose a basis of the space (of observables) generated by {g-1 O g} :

 This defines a representation of the group G

 Definition: a representation of a group G is an application which

associates an n*n invertible (unitary) matrix M(g) to each group element g,

with the property:   M(g) * M(g’) = M(gg’) and M(Id)=identity matrix

 Decompose each g-1 Oi g-1 in this basis :

The matrices M(g) form a rep. of the group G.
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Nematic orders

Isotropic

-

-

Nematic

exp(2iθ)

Broken sym.:

Smectic A

exp(2iθ)

exp(i k. ry )

Broken sym.:
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Example of order parameter: spin nematics

 A spin system in which the spins spontaneously chose a common plane, 

but no particular direction in this plane

z

 Or, selection of an axis, but no direction along that axis:

z

 Several quantum spin models are known to realize such kind of spin nematic phases

Lauchli et al. 2005; Shannon et al. 2006

 Experimental realization ? Perhaps NiGa2S4 (Nakatsuji et al. 2005) ?

http://link.aps.org/doi/10.1103/PhysRevLett.95.137206
http://link.aps.org/doi/10.1103/PhysRevLett.96.027213
http://dx.doi.org/10.1126/science.1114727
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Example of order parameter: spin nematics
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Ground state degeneracy & order parameters

 Phase with discrete broken symmetry → finite number of “ground-sates”

|1>, |2>, … , |d>

|1>,… , |d> form a representation  Γ (of dim=d) of the symmetry group

 Γ can be decomposed onto I.R.

 One can find an order parameter associated to each of the γ above

(except the trivial one).

 Example: dimer on the square lattice & the columnar phase.

- Four ground states => Γ is a rep. of dim=4

- Decomposition over IR.

- Find 2 “irreducible” order parameters of dim=1 and dim=2 ? Exercise !


cba

1

2dim1dim1dim4dim
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Landau theory of phase transitions (in a nutshell)

 Idea: to describe the “universal” (long-distance & low-energy) properties of 
a system in the vicinity of a phase transition, one does not need to know 
the behavior of all the particles… Instead, one only needs to consider a few 
macroscopic variables:  the order parameter(s) of the competing  phases.

 Expand the free energy in powers of the expectation values of the order 
parameters. At a given order, include all possible terms allowed by 
symmetries.

ex:  

Symmetry: m ↔ -m
F(T,m)= a(T)*m + b(T)*m2 + c(T)*m3+d(T)*m4

 Minimize the free energy F(T,m) as a function of the phenomenological 
parameters (appearing in the expansion above: b(T) and d(T) )

(mean field).

 Include space derivatives & fluctuations → better description of transitions

 Remark: in the group-theory language, “allowed by symmetry” means 
“component in the trivial representation”. Useful when looking for “allowed” 
terms involving several (possibly complicated) order parameters.

F(m)

m
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Application of the Landau theory: cubic invariant

 n- component order parameter: O1..On.

 Assume that some polynomial of degree 3 in the Oi is invariant under

all the symmetries of the model.
Remark: Finding if such terms exist is easy using group theory the characters of representations !

 Result: 1st order phase transition !

F(O)=aO2+bO3+cO4

The generic situation (except fine tuning of the parameters)

is a jump from O=0 to O=finite

n
O

O

O 
 1
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Beyond Landau’s theory of phase transitions

Sometimes, find order parameter(s) is not  enough to describe phase transitions.

Examples:

 Liquid-gaz transition

 Metal-Insulator transition

 2d classical XY model and the “Berezinsky-Kosterlitz-Thouless” phase transition

Low: T: algebraic spin-spin correlations    High T: exponential decay.

In both phases: no spontaneously broken symmetry,

and therefore no order parameter to distinguish the two phases.

Physics of  topological defects (vortices) is not captured

by a simple Landau approach.

 Transition between a dimerized and a gapless phase in the J1-J2 Heisenberg chain

(spin=1/2).

Even though the dimerized phase has a broken symmetry, it is in fact, same universality 

class as the BKT transition above.

 Deconfined critical points (Senthil et al. 2004): order parameters are there, but they are 

not the correct variables to describe the 2nd order quantum phase transitions in some 

particular 2d quantum magnets (Landau would predict them to be first order).

J1J2

http://www.sciencemag.org/cgi/content/abstract/sci;303/5663/1490
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Continuous symmetry breaking & Nambu-Goldstone mode 

 Spontaneously broken continuous (global) symmetry +short-range interactions

Gapless (long-wavelength) excitations,

linear dispersion relation: ω(k) ~k.

NB: As many modes as broken symmetry generators.

 Examples:

 spin waves in antiferromagnets (exercise: how many modes  for a 
collinear magnet ? For a non-collinear magnet ?)

 spin nematics

 Sound in crystals

 Sound in superfluity He4, …

 What about superconductors ? → Higgs mechanism

Uniform rotation:

costs nothing

Long wavelength modulation

Of the rotation angle:

costs little
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Mermin Wagner theorem
Hohenberg 1967; Mermin & Wagner 1966

 Spontaneous  break down of a continuous symmetry is forbidden in the 

following situations :

 Classical 1d and 2d,  T>0

 Quantum 1d T=0   (what about ferromagnets ?)

 Idea: Otherwise the thermally (quantum mechanically) excited Goldstone 

modes would destroy the long range order. Proof: See, for instance, 

Auerbach “Interacting electrons & quantum magnetism”, Springer 1994

 Absence of cont. sym. breaking does not mean no phase transition.

Examples:

 BKT in the 2d XY model: none of the two phase break any sym.

 J1-J2 Heisenberg model on the square lattice: break down of a 

discrete lattice symmetry in the ordered phase. Continuous sym. 

are preserved. Weber et al. 2003

 2d, T>0: No sym breaking, but correlation length can be huge:

 3d couplings are often present…

)/exp()(
0

TTT

http://link.aps.org/doi/10.1103/PhysRev.158.383
http://link.aps.org/doi/10.1103/PhysRevLett.17.1133
http://books.google.fr/books?isbn=0387942866
http://link.aps.org/abstract/PRL/v91/e177202
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Gauge invariance – « local symmetry »

Charged particle of mass m and charge q in presence of a vector potential A :
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Gauss Law: ( ρ(r)-divE )|Phys>=0

 physical states must be invariant under gauge transformations.

→ Avoid having several spurious (gauge equivalent) states for the same “physical” state.
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Anderson-Higgs mechanism (Meissner effect)

Particle with mass m and charge q:

But also, ψ(r): wave-function of a Bose-Einstein condensate (assume n=cst)
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One can choose a gauge in which θ=0 everywhere

(→no phase degree of freedom anymore, no Goldtsone anymore)
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=“mass term” for the photon

→finite excitation gap for the electromagnetic field 

Higgs mechanism:

the Goldstone mode is “eaten up” by the gauge boson, which acquires a gap.

Re[Ψ]

Im[Ψ]

 Superconductivity & Meissner effect

 Effective theories for strongly correlated systems are often gauge theories.

 Particle physics & electroweak symmetry breaking (~200 GeV). Higgs, W & Z bosons.

θ
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Conclusions

 Symmetries and broken symmetries are important !

and interesting, and useful, …. 

 Starting point to define/distinguish states of matter

 Understanding some low-energy degrees of freedom (Goldstone etc.)

 Description/prediction of phase transitions (Landau theory)

 Some phases and phase transitions require however to go beyond 

Landau’s description in terms of broken symmetry. Several active fields of 

research :

 quantum Hall effect

 spin liquids (in frustrated magnets)

 topological insulators

 Deconfined critical points

 Confinement / deconfinement


