Conductivité Optique

Ricardo Lobo

École Supérieure de Physique et Chimie Industrielles de la Ville de Paris

Volume 1. July-August, 1893. Number 1.

ТНЕ

PHYSICAL REVIEW.

A STUDY OF THE TRANSMISSION SPECTRA OF CERTAIN SUBSTANCES IN THE INFRA-RED.

By Ernest F. Nichols.

Nichols, Phys. Rev. 1, 1 (1893).

A few optical excitations in solids

Outline

The basics of optical conductivity
The optical conductivity of metals
The f-sum rule and gaps
Fermi liquid signatures
Kinetic energy
Phonons and phase transitions

Disordered Materials

Preview: YBCO from an insulator to a conductor

Optical Conductivity Building Blocs

Light scattering

Maxwell Equations – The Message in the "Photon

Out"

Maxwell Equations in matter

$$\nabla \cdot \vec{D} = \rho$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

 $\vec{E} \sim \vec{B} \sim \exp(-i\omega t)$

In vacuum

$$\rho = 0 \quad \vec{J} = 0 \quad c = (\mu_0 \varepsilon_0)^{-1/2}$$

Wave with speed "c"

$$-\nabla^2 \vec{E} - \omega^2 \frac{1}{c^2} \vec{E} = 0$$

In matter

$$ec{\mathfrak{j}}(\omega)=\sigma(\omega)ec{E}(\omega)$$
 Ohm's law

Wave with renormalized speed

$$-\nabla^{2}\vec{E} - \omega^{2}\frac{1}{c^{2}}\underbrace{\left[1 + \frac{i\sigma(\omega)}{\varepsilon_{0}\omega}\right]}_{\varepsilon(\omega) = N(\omega)^{2}}\vec{E} = 0$$

Plane wave

The common optical functions

Refraction index: light propagation and attenuation

Dielectric function: microscopic polarizability

Optical conductivity: high-frequency electrical transport

$$\sigma = \sigma_1 + i\sigma_2$$
$$= i\varepsilon_0\omega(1-\varepsilon)$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{As/Vm}$$

Inside the Black Box – Fourier Transform Spectroscopy

Fellgett advantage Multiplex

Jacquinot advantage Slitless spectrometer

Nyquist theorem Discrete FT is fine

A Strange Choice for Units

 ✓ Wavenumber ω = 1/λ = 2πc/∞ → cm⁻¹
 ✓ Energy E = hv = hcω 1 eV ~ 8000 cm⁻¹
 ✓ Wavelength λ = 1/ω 1 μm = 10000 cm⁻¹
 ✓ Temperature T = hcω/k_B 10000 K ~ 7000 cm⁻¹

What else is in the black box?

Kramers-Kronig relations & the Reflectivity

$$\label{eq:rem} \oint \frac{f(z=\omega+i\Omega)}{z-\omega_0} dz = 0$$

Hilbert transform

$$f(\omega_0) = -\frac{i}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{f(\omega)}{\omega - \omega_0} d\omega$$

Kramers-Kronig

Causality:
$$f(\omega) = f^*(-\omega)$$
 \longrightarrow $\operatorname{Im} f(\omega_0) = -\frac{2\omega_0}{\pi} \mathcal{P} \int_0^\infty \frac{\operatorname{Re} f(\omega)}{\omega^2 - \omega_0^2} d\omega$
Reflectivity: $R = rr^*$
 $r = \sqrt{R}e^{i\theta}$
 $\log r = \frac{1}{2} \log R(\omega) + i\theta(\omega)$ But we need $R(\omega)$ at all energies

 f^{∞} **D** of (\cdot, \cdot)

The optical conductivity in metals

Drude Model

✓ Free electron gas

- ✓ No electron-electron interactions
- ✓ No electron-phonon interactions
- Scattering through elastic collisions

Drude, Ann. Physik 306, 566 (1900)

$$\sigma(\omega) = \frac{2\pi}{Z_0} \frac{\Omega_p^2}{\tau^{-1} - i\omega} = \frac{\sigma_0}{1 - i\omega\tau}$$
$$\Omega_p^2 = \frac{Z_0}{2\pi} \frac{ne^2}{m}$$
$$\sigma_0 = \frac{ne^2\tau}{m}$$

Drude in lightly doped Si

Transparent conducting oxides

Drude in metals (Silver)

But Drude fails in correlated matter...

Ignoring the elephant

Quijada et al., PRB 60, 14917 (1999)

The optical conductivity and multiband pnictides

Multiband – pnictides Dressel

Using two Drude terms [two bands (??)] solves the problems

Wu et al., PRB **81**, 100512 (2010)

Can we take a look at the elephant?

Patching the Drude Model

"Optical self-energy"

Is this extended Drude mambo-jambo of any use?

Basov et al., PRB 65, 054516 (2002)

Puchkov et al., JPCM 8, 10049 (1996)

One of the multiple versions of the cuprates phase diagram

Hole concentration

From a Nodal Metal to a Bad Metal to a Fermi Liquid

ParisTech

Heavy Fermions and LF Drude

Awasthiet al. PRB 48, 10692 (1993).

Dressel and Scheffler, Ann. Phys. 15, 535 (2006)

Mass enhancement leads to scattering rate decrease

Gaps and the sum rule

The Optical Conductivity Sum Rule

The charge transfer gap of (La,Sr)₂CuO₄

Uchida et al. PRB 43, 7942 (1991).

ParisTech

Density-wave like gap

✓ P₄W₁₄O₅₀

- ✓ CDW transition at T~140 K
- \checkmark CDW gap at 1400 cm⁻¹
- Spectral weight transfer from low to high frequencies

Hidden order in URu₂Si₂

- Phase transition at 17K to an unknown order parameter
- Possible renormalization of the band structure
- Order closely related to magnetism
- Gap opening at the Fermi surface

Bonn, PRL 61, 1305 (1988)

Even when we do not know what the crap is the gap, it still creates a spectral weight transfer

And let's go superconducting

Is the sum rule violated???

Superconducting gap – Back to Drude

Manifestation of the superconducting gap in the infrared

The gap in the cuprates

 T_c changes by a factor 3 and the thing that looks like the gap stays put ?!?!?!

Clean and Dirty

Clean superconductor

$$l \gg \xi_0$$
$$v_f \tau \gg \frac{v_f}{2\Delta}$$
$$\frac{1}{\tau} \ll 2\Delta$$

- In a clean superconductor you do not see the gap because there is no optical conductivity left at that frequency
- The important feature in the optical conductivity is the determination of the superfluid density.

✓ The gap is a bonus!!!

The gap in the cuprates

Pnictides Gap Review

s± gap: Interband scattering is pair breaking

- Interband scattering annihilates Cooper pairs
- Residual Drude peak in the superconducting state

Lobo et al. (2010)

The infamous cuprate pseudogap

The pseudogap

Alloul, PRL 63, 1700 (1989)

Norman et al. Nature 392, 157 (1998).

 $Nd_{2-x}Ce_{x}CuO_{4}$

Armitage et al. PRL 81, 257001 (2002).

Restricted Spectral Weight or Partial Sum Rule

Zimmers et al., EPL 70, 225 (2005).

ESPCI ParisTech

Bi-2212 – Where is the pseudogap?

Santander-Syro et al., PRL 88, 097005(2002).

Why the difference?

Norman et al. Nature 392, 157 (1998).

Armitage et al. PRL 81, 257001 (2002).

The pseudogap in the scattering rate

AND NOW FOR SOMETHING COMPLETELY DIFFERENT

Light and Matter interaction

Phonons and the Harmonic Approximation

And for many phonons

$$\varepsilon = \varepsilon_{\infty} + \sum_{j} \frac{\Delta \varepsilon_{j} \Omega_{TOj}^{2}}{\Omega_{TOj}^{2} - \omega^{2} - i\gamma_{j}\omega}$$

$$\Delta \varepsilon_j \Omega_{0j}^2 = \frac{n_j q_j^2}{m_j} \qquad \varepsilon(0) = \varepsilon_\infty + \sum_j \Delta \varepsilon_j$$

Phonons & the f-sum rule

The f-sum rule (particle conservation):

$$\sigma = \frac{2\pi i\omega}{Z_0} \chi \qquad \int_0^\infty \operatorname{Re}\left[\sigma(\omega)\right] d\omega = \operatorname{const} \times \left(\frac{n_e}{m_e} + \frac{n_p}{m_p}\right)$$

The f-sum rule for phonons:

$$\sum_{j} \Delta \varepsilon_{j} \Omega_{0j}^{2} = \sum_{j} \frac{n_{j} q_{j}^{2}}{m_{j}} = const$$

The f-sum rule for decoupled phonons:

$$\Delta \varepsilon_j \Omega_{0j}^2 = \frac{n_j q_j^2}{m_j} = const$$

Soft Mode & Phase Transitions

SrTiO₃ – A wannabe ferroelectric

 ✓ Incipient soft mode driven ferroelectric transition

Soft mode and Ferroelectrics

The Multiferroic Materials Totem

Magneto-electric Multiferroics

Ying & Yang

Yang (TbMnO₃) is more fun!

Kimura, Nature 2003.

TbMnO₃ Phonon Spectra (T = 5 K)

So, where is the action?

Pimenov et al., Nat. Phys, 2006.

- ✓ Magnetic excitation
- Activated by electric field of light only
- \checkmark Suppressed by an external magnetic field

Senff et al. PRL 2007

Magnons and Phonons

Stronger electromagnon at 60 cm⁻¹ coupled to phonon at 110 cm⁻¹

Takahashi et al. PRL 101, 187201 (2008)

Phonon spectral weigths

The electromagnon is built from two phonons

Disorder in (Y,Pr)Ba₂Cu₃O₇

- ✓Pr is an underdoping agent
- ✓Empties CuO2 planes
- ✓Localizes charges along chains

Lobo et al. PRB 65, 104509 (2002).

ParisTech

Effective Medium Theories

Effective Medium Models for a Superconductor with

Effective Medium Models for a Superconductor with Vortices

Summary

ParisTech

Rappels

- ✓ Technique moyennée en impulsion
- Mesure de la conductivité électrique aux hautes fréquences
- Vic à fréquence nulle = charge mobile
- Vic à fréquence finie = charge localisée
- Accès aux états électroniques et à leur distribution en énergie
- ✓ Règle de somme de la conductivité

