Cold atoms and condensed matter

T. Giamarchi

http://dpmc.unige.ch/gr giamarchi/

http://www.manep.ch

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

How to study ?

Very difficult !!

Bednorz

Muller

Example of High Tc superconductors (86)

Find a simplified model

Simplest model containing: - Bands (filling) - Interactions

Hubbard model (1963)

Analytic calculations

• No good method (except 1d)

• Various approximations to simplify the model

• Never sure whether the results are or are not an artefact of the approximations used

Numerical calculations

• Extremely powerful for classical systems

• Quantum systems Bosons " $(x1,x_2) =$ " $(x2,x_1)$ Fermions " $(x1,x_2) =$ - " $(x2,x_1)$

• Sign problem !!

Configurations: "probabilités" négatives si on veut représenter par des nombres

PRL 94, 170201 (2005)

PHYSICAL REVIEW LETTERS

week ei 6 MAY

Matthias Troyer¹ and Uwe-Jens Wiese² ¹Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland ²Institut für theoretische Physik, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland (Received 11 August 2004; published 4 May 2005)

Quantum Monte Carlo simulations, while being efficient for bosons, suffer from the "negative sign problem" when applied to fermions—causing an exponential increase of the computing time with the number of particles. A polynomial time solution to the sign problem is highly desired since it would provide an unbiased and numerically exact method to simulate correlated quantum systems. Here we show that such a solution is almost certainly unattainable by proving that the sign problem is nondeterministic polynomial (NP) hard, implying that a generic solution of the sign problem would also solve all problems in the complexity class NP in polynomial time.

Exponential error with the system size

Properties (U>0)

Mott insulator (n=1)
T < T_N : Antiferromagnetic phase
No numerical problem (n=1)

What to do?

A genius guess what the right solution is
Brute force numerical attack
Find a « computer » that does not suffer from sign problem

Help from another field of physics

Atom cooling

Atom trapping

• Evaporative cooling

Group: T. Esslinger (ETH, Zurich)

BEC in cold atomic gases

2001: Cornell, Ketterle, Wieman

1924: predicted by Bose and Einstein

Atoms in a lattice

Tunnelling

Short range interaction

Proposal: D. Jaksch et al PRL81 3108 (98)

P. Zoller

Simulators for condensed matter

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, I. Bloch, Nature 415 39 (2002)

Control on the dimension

I. Bloch, Nat. Phys 1, 23 (2005)

Quantum simulators !

Interactions (Lattice, Feschbach resonnance) Statistics

Dimensionality

ENS, ETH, LENS, Mainz, MIT, NIST, Penn State,

Dream ??

Two dimensional superfluids

nature

Vol 441|29 June 2006|doi:10.1038/nature04851

LETTERS

Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas

Zoran Hadzibabic¹, Peter Krüger¹, Marc Cheneau¹, Baptiste Battelier¹ & Jean Dalibard¹

a c Low temperature Lattice beams $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ Camera Camera d High temperature Imaging beam b c c c Low temperature $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ \frac

Anderson localization (1958)

38/nature07000

LETTERS

nature

Direct observation of Anderson localization of matter waves in a controlled disorder

Juliette Billy¹, Vincent Josse¹, Zhanchun Zuo¹, Alain Bernard¹, Ben Hambrecht¹, Pierre Lugan¹, David Clément¹, Laurent Sanchez-Palencia¹, Philippe Bouyer¹ & Alain Aspect¹

Aubry-Andre Model (Ann. Isr. Phys. Soc. 3, 133 1980)

Anderson localization (1958)

8/nature07071

nature

_etters

Anderson localization of a non-interacting Bose-Einstein condensate

Giacomo Roati^{1,2}, Chiara D'Errico^{1,2}, Leonardo Fallani^{1,2}, Marco Fattori^{1,2,3}, Chiara Fort^{1,2}, Matteo Zaccanti^{1,2}, Giovanni Modugno^{1,2}, Michele Modugno^{1,4,5} & Massimo Inguscio^{1,2}

Aubry-Andre Model (Ann. Isr. Phys. Soc. 3, 133 1980)

Interactions

Stoner criterion

Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms Gyu-Boong Jo, *et al.* Science **325**, 1521 (2009);

Hubbard model

Vol 455|11 September 2008| doi:10.1038/nature07244

LETTERS

nature

A Mott insulator of fermionic atoms in an optical lattice

Robert Jördens¹*, Niels Strohmaier¹*, Kenneth Günter^{1,2}, Henning Moritz¹ & Tilman Esslinger¹

Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

5 DECEMBER 2008 VOL 322 SCIENCE

U. Schneider,¹ L. Hackermüller,¹ S. Will,¹ Th. Best,¹ I. Bloch,^{1,2}* T. A. Costi,³ R. W. Helmes,⁴ D. Rasch,⁴ A. Rosch⁴

Exotic physics, reduced dimensionality

One dimension: Luttinger liquids

T. Stoferle *et al.* PRL **92** 130403 (2004)

A.F. Ho, M. A.Cazalilla, TG PRL 92 130405 (2003); NJP 8 158 (2006)

1D Mott insulator

1D physics (Luttinger Liquids)

Experiments

T. Stoferle *et al.* PRL **92** 130403 (2004)

B. Paredes et al Nature (2004)T. Kinoshita et al. Science (2004)M. Kohl et al. PRL (2004)

Coupled 1D Fermionic chains: Deconfinement

Deconfinement

P. Auban-Senzier, D. Jérome, C. Carcel and J.M. Fabre J de Physique IV, (2004)

D. Jaccard et al., J. Phys. C, 13 L89 (2001)

New possibilities

Out of equilibrium physics

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, I. Bloch, Nature 415 39 (2002)

Quantum dynamics of isolated

systems

LETTERS

nature

A quantum Newton's cradle

Toshiya Kinoshita¹, Trevor Wenger¹ & David S. Weiss¹

Bosons with "spins"

[L.E. Sadler *et. al.*, Nature **443**, 164 (2006)] [J.M. Higbie *et. al.*, PRL **95**, 050401 (2005)] ⁸⁷Rb atoms, F=1 states Spin 1 system [J.M. McGuirk *et. al.*, PRL **89**, 090402 (2002)]

 $|F=1,m_F=-1|$ and $|F=2, m_F=1|$ "spin" ¹/₂ system [M.Erhard *et. al.*, PRA **69**, 032705 (2004)] [A. Widera *et. al.*, PRL **92**, 160406 (2004)]

Dream ??

The simulator is not perfect (yet)

Température (Fermions)

T = 1 nK

Mais $T/T_F = 1/6$

$T_{eff} = 2000 \text{ K}$

Confining potential

$H = v r^2 \rho(r)$

• No homogeneous phase !

Probes !

Atoms are neutral !

n(k) (time of flight)

useless for fermions !

Need to probe correlations !

time-of-flight measurement -> momentum distribution

München

noise measurement:

-> density-density correlations

microwave spin-changing transitions density spatially resolved

molecule formation binding energy doubly occupied sites

proposed: Raman spectroscopy ->Green's function, Fermi surface

periodic lattice modulation

Zurich

A. Iucci, M.A. Cazalilla, AF Ho, TG, PRA 73, 041608R (2006);
C. Kollath, A. Iucci, TG, W. Hofstetter, U. Schollwock, PRL 97 050402 (06)
C. Kollath et al. PRA 74 041604(R) (2006):

"Photoemission"

nature

Vol 454|7 August 2008|doi:10.1038/nature07172

LETTERS

Using photoemission spectroscopy to probe a strongly interacting Fermi gas

J. T. Stewart¹, J. P. Gaebler¹ & D. S. Jin¹

Observation in "real time" of the Hubbard model

Letter

Nature 462, 74-77 (5 November 2009) | doi:10.1038/nature08482; Received 20 July 2009; Accepted 3 September 2009

A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice

Waseem S. Bakr¹, Jonathon I. Gillen¹, Amy Peng¹, Simon Fölling¹ & Markus Greiner¹

ARTICLE LINKS

Figures and tables

SEE ALSO

Editor's Summary

ARTICLE TOOLS

M. Greiner et al.

Need local probes !

STM

CAT

C. Kollath, M. Koehl, TG PRA 76 063602 (2007) Physics Web http://physicsweb.org/articles/news/11/4/13/1

Ions + cold atoms

A trapped single ion inside a Bose-Einstein condensate

Christoph Zipkes, Stefan Palzer, Carlo Sias, and Michael Köhl Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom

Conclusions

- Cold atoms/condensed matter: complementary
- Cold atoms: quantum simulators
- Tunability and local interactions. Ideal to explore low dimensional physics.
- Offer new exciting possibilities (out of equilibrium, isolated quantum systems, etc.).
- Inhomogeneous phases

And I'm not happy with the analyses that go with just the classical theory, because Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better do it quantum mechanical, and by golly it's a wonderful problem because it does not look so easy.

Richard P. Feynman, "Simulating Physics with Computers" Int. J. of Theor. Phys. (1981)