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Kinetic theory of gasesy g

 = 1/3 C v l  1/3 C v l

Thermal conductivity mean-free-path

Heat capacity velocity

Jq (W cm-2)

hot cold = Jq /(-∇T)
[WK-1cm-1]

∇T (K cm-1)



Heat conduction in insulators
Phonon-
h

Phonon-
defect
scattering phonon

scattering
scattering

Only phonons carry heat!



Heat conduction in insulators

Phonons are both 
carriers and scatterers

As T increasesAs T increases, 
• More carriers !
• More scattering centers!



Heat conduction in metals
Electron-
hElectron- phonon

scattering
Electron-
defect
scattering

Carriers:electrons & 
phonons

Scatterers: phonons, 
deffects (and electrons)

Electrons are dominant carriers of heat!



The best conductor at room temperature!

Graphene at room TGraphene at room T

Non-interacting
phonons !



In the zero temperature limit

• Mean-free-path attains its maximum valuep
and then:

T3 ( h b )ph ∝T3 (phonons are bosons)

e ∝T  (electrons are fermions)e ( )

In principle, one can separate 
the two contributions!



ExampleExample 

Taillefer et al., 1997



Thermal conductivity of superconductorsThermal conductivity of superconductors

• Above Tc a superconductor is a metal
(mobile electrons carry heat!)(mobile electrons carry heat!)

• Below T mobile electrons condensate in a• Below Tc, mobile electrons condensate in a 
macroscopic quantum state: electronic heat 
carriers vanish!carriers vanish!

• A superconductor can be assimilated to a thermal• A superconductor can be assimilated to a thermal 
insulator



In conventional superconductorsp

• Electron thermal conductivity decreases 
ti llexponentially

• Phonon thermal conductivity increases due 
to a diminished electron scatteringto a diminished electron scattering

At finite temperature, the temperature dependence of thermal 
conductivity in a superconductor is complex !y p p



Example: niobium
A phonon peak, 
whenever the 
hphonon mean-

free-path can 
increase below
T !Tc!

Kes et al.
J. Low Temp. Phys.
(1974)

normal

superconducting

e- component



Unconventional superconductors

• The order parameter of the unconventionalThe order parameter of the unconventional 
superconductors is less symmetric than the 
Fermi surface of the mother metal.Fermi surface of the mother metal.

Th f i i h l• The gap function can vanish along 
particular orientations (nodes).

• Nodal quasi-particles can carry heat!Nodal quasi particles can carry heat!



Effect of an unconventional 
d ti t iti th lsuperconducting transition on thermal 

transporttransport

• The electronic thermal transport does NOT• The electronic thermal transport does NOT 
decrease exponentially

• It can even increase below T (due to an• It can even increase below Tc (due to an 
increase in the electronic mean-free-path

 = 1/3 C v l



Scattering events are restricted in an g
unconventional superconductor

s-wave d-wave



Heat conduction in YBCO

Aubin 1997

The increase in thermal conductivity below Tc is due to electrons! 



Enhanced electronic thermal conductivity in 
other unconventional superconductorsother unconventional superconductors

CeCoIn5 (Seyfarth et al., 2008)



Thermal transport in the zero-temperature 
limit

• A finite linear term in thermal conductivity

• A residual normal fluid of nodal quasi-particles
=  T + + bT3= 00T +...+ bT3



Example: heavy-fermion superconductor CePt3Si

Izawa et al., PRL ‘05 ,

A superconductor withA superconductor with
no inversion symmetry and 
yet with nodal quasi-
particles!particles!



Universal thermal conductivityUniversal thermal conductivity

• In a d-wave superconductor, in a first 
approximation 0 is independent of impurityapproximation 0 is independent of impurity 
concentration

Decrease the mean-free-path

Impurities: 
Enhance the specific heat

These two cancel out in a subset of unconventional superconductorsThese two cancel out in a subset of unconventional superconductors.



A TALE OF TWO VELOCITIES!
( )(Durst , Lee ’99)

E it ti t iExcitation spectrum in

the vicinity of a node: 
E(k)  =  (k

2 + k
2)1/2

= (vF
2k1

2 + v2
2k2

2)1/2

Fermi velocity :vF = dk/dk1

Gap velocity: v2= dk/dk2
00/T =(nkB

2/3ħ) (vF / v2)



Experimental observation of 
universal thermal conductivity

A 30 f ld d i f th i Z d d YBCOA 30-fold decrease in mean-free-path in Zn-doped YBCO
leaves 0 unchanged (Taillefer et al., PRL 1997)



Universal conductivity in other 
unconventional superconductors

0 independent of impurity concentration 
checked in:checked in:

• Bi2Sr2CaCu2O8 (Nakamae et al. , 2001)
• Sr2RuO4 (Suzuki et al. , 2004)2 4 ( , )

0 of the right order of magnitude found in:
• κ-(BEDT-TTF) Cu(NCS) (Belin et al 1998)• κ-(BEDT-TTF)2Cu(NCS)2 (Belin et al., 1998)
• CePt3Si (Izawa et al., 2005)
• URu2Si2 (Kasahara et al., 2007)
• CeCoIn5 (Seyfarth et al., 2008)



Mesauring thermal conductivity

Temperature captors:
Resistive thermometers
or thermocouples!



Part II- transport equations



Heat and charge current in a solid
EJe 


 TEJe  


TJQ 




T

TEJQ



 


T 

T  Kelvin relation, (1860) Onsager relation (1930)

Four vectors



Three tensors

 electric conductivity

Four vectors

Je : charge current density
J h t t d it  electric conductivity

 thermal conductivity
 thermoelectric conductivity

JQ : heat current density
E : electric field
DT : thermal gradient



Definition of thermoelectric 
coefficients

• In presence of a thermal gradient, xE


p g ,
electrons produce an electric field.

• Seebeck and Nernst effect refer to the

B


hot ld• Seebeck and Nernst effect refer to the 
longitudinal and the transverse 
components of this field.

JQyE
 cold

T


T
ES x


 E

SN y
 ][ TB

Ey


Tx T

SN
x

xy 
][ TB xz



Link to the Peltier tensor:  


xxS




Seebeck coefficient
xx

/ xyxxxxxyBN





Nernst coefficient
22/
xyxx

BN





Experimentally, what is measured is S and p y



Seebeck and Peltier coefficients
Peltier effect A thermal gradient created b an electric c rrentPeltier effect: A thermal gradient created by an electric current

QJ
 Je

e

Q

J


QJ



Seebeck and Peltier coefficients
Seebeck effect An electric field created b a thermal c rrentSeebeck effect: An electric field created by a thermal current

ES x
T

S
x

x


 E

T




The Kelvin relation : ST



Nernst and Ettingshausen coefficients



N t ffi i t


B

Nernst coefficient EyT


Ey

T
S

x

y
xy 




Nernst and Ettingshausen coefficientsg

Etti h ffi i t

B


Ettingshausen coefficient 
 = yT/Je

JeT




Nernst and Ettingshausen coefficientsg

Sxy=   / T Bridgman relationship,xy g p

Etti h ffi i t

B


Thermal conductivity

Ettingshausen coefficient 
[ = yT/Je]

JeT




Nernst and Ettingshausen coefficientsg

Sxy=   / T Bridgman relationship,xy g p
Sommerfeld and Frank, Rev. Mod. Phys., 1931

Etti h ffi i t

B


Thermal conductivity

Ettingshausen coefficient 
[ = yT/Je]

JeT


QyQy =  y T = Je 



Nernst and Ettingshausen coefficientsg

Sxy=   / T Bridgman relationship,xy g p
Sommerfeld and Frank, Rev. Mod. Phys., 1931

Etti h ffi i t

B


Thermal conductivity

Ettingshausen coefficient 
[ = yT/Je]

JeT


Qy
Qy =  y T = Je 

Energy cost : (Qy /T) y T =  Je  y T / T 

C b id d b El t i fi ld E
Ex / y T =   / T

Can be provided by an Electric field Ex
JeEx = k Je  y T / T 



The Semi-classic pictureThe Semi classic picture

TETJ

TEJ

Q

e












TETJQ 

k 22

F
T

e
k B







22

3 e 3

 k 22

 T
e

k B
23

 The Wiedemann-Franz law!

e3



The Wiedemann Franz lawThe Wiedemann-Franz law

• Strictly valid in absence of inelastic
tt iscattering

• A robust signature of a Fermi liquid
(expected to break down in case of spin-charge separation)

• Even in Fermi liquids a finite downward
d i ti i t d i fdeviation is expected in presence of 
inelastic scattering



Carriers of charge are carriers of heat

22 k B The ratio of two conductivities is 
li k d t th ti f th t t

23 eT
 linked to the ratio of the two quanta 

of charge and entropy!

Can be derived using the kinetic equation!

2
2 FF vNe )(1 2  )(

3
2

FBTNkC 
 eFF vNe )(

3


 TkvC B
Fel 2

22

33
1

 
e233



The effect of an electric field and a thermal 
gradient on a Fermi surfacegradient on a Fermi surface

T. Ziman
El d hElectrons and phonons

The electric field displaces the Fermi surface, but a thermal 
gradient makes it fuzzier in the hotter end!



The Wiedemann-Franz law is recovered only at
T 0 d t hi h t t !T= 0 and at high temperatures!

At high temperatures vertical scattering beomes marginal because of theAt high temperatures vertical scattering beomes marginal because of the 
thermal broadening of the Fermi surface



III C l d lIII. Correlated electrons



Landau theory of Fermi liquidsLandau theory of Fermi liquids

• Why band theory is successful in spite of its 
neglect of electronic interactions?

• Interaction electrons can be mapped to non-
interacting quasi particles with the same spin andinteracting quasi-particles with the same spin and 
charge

• Normalized mass of quasi-particles contains all 
information on the magnitude of the interactions g



Heavy Fermi liquidsHeavy Fermi liquids

• Intermetalics containing a 4f  (Ce, Yb…) 
or 5f  (U, Pu,…) element.

• High temperature: A Fermi sea andHigh temperature: A Fermi sea and 
localised spins
L t t H i ti l• Low temperature: Heavy quasi-particles
as a result of hybridization of f electrons
and conduction electtrons



Heavy Fermi liquidsHeavy Fermi liquids

• Enhanced specific heat )(2
2

Nk  • Enhanced specific heat )(
3 FB Nk  

• Enhanced Pauli Susceptibility )(2
FB N  p y )( FB

A T2• Enhanced T2-resistivity =0 +A T2

2)(NA 2)( FNA 



Fermi liquid ratios
The Wilson ratio 

2

22

3
B

W
kR 

 23 B
W



Fermi liquid ratios

The Kadowaki-Woods ratioThe Kadowaki Woods ratio

AKW 2
KW 



Thermoelectric response

hot cold

A finite thermal gradient!hot
cold

A finite electric field!
But no charge current!

1.0

hot

F

cold

Response to a gradient in
0.5

O
cc

up
at

io
n

Response to a gradient in 
chemical potential!

O

0.0

Energy



Thermoelectric response

hot cold

Carriers with a charge, q, and an entropy, Sex will suffer two forces:

•Electric force: F= E q 
•Thermal force: F= Sex ∇T hot coldex

S = E/ ∇T = Sex /q
1.0

io
n

F

Thermopower measures entropy
per [charged] carrier.

0.5

O
cc

up
at

i
per [charged] carrier.

S = (kB T/ EF)/ e 0.0

Energy



Seebeck coefficient of the free electron gasSeebeck coefficient of the free electron gas

In the Boltzmann picture  thermopower is linked to electric conductivity:

This yields:

t t Th d itransport Thermodynamic

For a free electron gas, with =0
, this becomes:



Thermopower and specific heatThermopower and specific heat
In a free electron gas (with =0):

Thermopower is a measure of specific heat per carrier

The dimensionless ratio:

is equal to –1 (+1) for free electrons (holes)

[if one assumes a constant mean-free-path , then =1/2 and q=2/3]



Thermoelectricity in real metals

• Even in simplest metals, 
the free electron gasthe free-electron-gas 
picture does not work at 
finite temperature !finite temperature !

Structure in the thermopower of 
AlKali metals (MacDonald 1961) !



Phonon Dragg

h t ldhot cold

Flow of heat-carrying phonons

•If electrons and phonons exchange energy then
electrons would be dragged by phonons

L tti ifi h t

CS LPhonon dragg thermopower

Lattice specific heat


Ne

S L
g Phonon dragg thermopower

Carrier density
e- - ph coupling (0<<1)

Carrier density



Order of magnitude of phonon draggOrder of magnitude of phonon dragg
(T/D)3


e

L
diffg C

CSS / Frequency of ph-e- scattering
events

e- per atomT/TF

MacDonald 1961
• Expected to vanish in the 

zero-temperature limit
• Becomes negligible when

Ce>> CL



Heavy electrons in the T=0 limit
Two-decades-old data replotted!

Extrapolated to T=0, data yields a q close to unity!



Another plot linking two distinct signatures 
of electron correlationof electron correlation

KB, D. Jaccard,
J Fl t 2004J. Flouquet 2004



Data since 2004

 S/T q

UPt3 430 2.5 0.6

NpPd5Al2 200 -1.3 -0.65

CeNi2Al3 30 0.27 0.9

PrFe4As12 340 -1 0.3

YbRh2Si2 750 -6.7 -0.8

FeTe 34 -0.3 -0.9

MgB2 3 0.04 -1.33 0.04 1.3

SrRu03 30 0.24 0.8

SrRh2O4 10 0.22 2.2



In semi-metals q is large!

•URu2Si2 (q= 11)URu2Si2 (q=-11) 

•PrFe4P12 (q=-58) 

•PrRu4P12 (q=-43) 

•CeNiSn ( 107)•CeNiSn (q=107) 

•Bi0.96Sb0.04 (q=104) 

In these systems the FS occupies a small fraction (~1/2q) of  the 
BZ.



Theory on correlation between S and 

Miyake & Kohno, JPSJ (2005) 

In both unitary and Born limits, q ~ 1

Zlatic, Monnier, Freericks & Becker, PRB 2007

(Single-impurity Anderson model)

Paul & Kotliar, PRB 2001
Near a QCP both expected to diverge logarithmicallyNear a QCP both expected to diverge logarithmically

Haule and Kotliar, CorrelatedThermoelectricity workshop (2008)
DMFTDMFT



Measuring the Fermi energy of an 
electronic system

• Resistivity: 22

1

F

a
e
hA




Fe 

12

• Specfific heat
F

Bnk


 1
3

2
2


F

kS 12
• Thermopower

F

B

e
k

T
S


 1
3

2


F



Electronic correlationsElectronic correlations…

• Do not enhance or diminish the absolute
value of  or  components in the T=0 limitvalue of  or  components in the T 0 limit

• But, they do enhance the magnitude of , 
the thermoelectric responsethe thermoelectric response



IV N t ff tIV. Nernst effect



Thermoelectric coefficientsThermoelectric coefficients

• In presence of a thermal gradient, 
electrons produce an electric field.

xE


• Seebeck and Nernst effect refer to the 
longitudinal and the transverse 
components of this field.

B


hot ldcomponents of this field.
JQyE

 cold

T


ES x
E

SeN y
][

Ey


TS
x

x
 T

SeN
x

y
xyy 
 ][

TB xz




Nernst effect in a single-band metal

Absence of charge current leads to a counterflow of hot and coldAbsence of charge current leads to a counterflow of hot and cold
electrons:

B


e-JQ 0 ; Je= 0 ; Ey= 0
e-

EyJQ

T


In an ideally simple metal the Nernst effect vanishes!In an ideally simple metal, the Nernst effect vanishes!
(« Sondheimer cancellation », 1948)



Nernst coefficient in remarkable metals!



A large diffusive component in the zero-temperature limit!



Close-up on Sondheimer cancellation

TEJ e 




TETJ Q

e






Je=0Je 0

Boltzmann picture:

If the Hall angle  does not depend on the position of the Fermi levelIf the Hall angle, H, does not depend on the position of the Fermi level, 
then the Nernst signal vanishes!



Roughly, the Nernst coefficient  tracks cF…

N ~ 2/3 k2 T/e   / N ~ 2/3 k2
BT/e c / F



Recipe for a large diffusive Nernst response:

•High mobility

•Small Fermi energygy

•Ambipolarity

In graphite at 20 K and 1T
Sxy ~3mVK‐1,  ~3mcmxy , 
Sxy2/ = 3000 WK‐2cm‐1



Nernst effect as a probe of quantum criticality

Izawa et al. 2007

The case of CeCoIn5

Paglione et al. ,2003, Bianchi et al. 2003

logarithmic color plot of /T

Nernst effect directly reveals the quantum critical point!



Nernst effect in the vortex state

B


Ey

T

• Thermal force on the vortex :A superconducting vortex is:

T

Thermal force on the vortex : 
F=-S T (S : vortex entropy)

• The vortex moves
Th t l d t

A superconducting vortex is: 
• A quantum of magnetic flux 
• An entropy reservoir • The movement leads to a 

transverse voltage: Ey=vx Bz

py
• A topological defect



Nernst effect in optimally-doped YBCO

The Nernst coefficient is finite only
in the vortex liquid state!

(Ri, Huebner et al. 1994)



Vortex-like excitations in the normal state of the 
underdoped cuprates?underdoped cuprates?

Ong et collaborators 2006

A finite Nernst signal in a wide temperature range above Tc



A small Fermi surface
Highly mobile electronsHighly mobile electrons



Th ll l tThe small electron
pocket generates a 
sizeable negative

Nernst signal!

Within a factor of 2 of 
h t i t d fwhat is expected for 

the normal state!



Nernst effect due to Gaussian fluctuations of the 
amplitude of the superconducting order parameteramplitude of the superconducting order parameter

(Usshishkin, Sondhi & Huse, 2002)

In 2D:In 2D:

Magnetic length

Quantum of thermo-electric conductance (21 nA/K)

Magnetic length

In two dimensions, the coherence length is the unique 
parameter!p



The coherence length above Tcg c



How do the fluctuating Cooper pairs generate a Nernst signal?

cold hot

•Above Tc, the lifetime of 
the Cooper pairs 
d ith i i

cold h t

decrease with increasing 
temperature

cold hot •Therefore, those pairs 
which travel from the hot 
side along the cold side 
live longer! 

dT/dx
EEy B



Superconductivity in Nb0.15Si 0.85 thin films
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The normal state is a simple dirty metal: le~a~ 1/kF !



Nernst effect across the resistive transition 

• A large vortex 
signal below Tsignal below Tc

•A long g
tail
above Tc

Pourret 2006
c



A signal distinct from the vortex signalA signal distinct from the vortex signal



Deep into the normal state!

Pourret 2006

Can this signal come from normal electrons?



The Nernst signal of the normal electrons is negligible!

10 5 T ~10 -5 T
F ~104 K

Even at 6K : 
The expected normal 
state contribution is threestate contribution is three
orders of magnitude 
smaller than /T !



Comparison with theory
Experiment:

1E-3
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Theory:
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 xy/B (USH) 



2k 
0.02 0.1 1 4

ln(T/TC) 
-2
d

2
d2

2
Bxy .ξ

6π
ek










USHB


Satisfactory agreement close to TSatisfactory agreement close to Tc



The ghost critical fieldPourret 2008 g

Sample 2

Contour plot of N= -Ey /(dT/dx)



A unique correlation length

v 31
Contour plot of the Nernst 
coefficient =N/B

cB

F
d Tk

v 

2
336.01


 

coefficient  N/B
Pourret 2008


