

Intra-Unit-Cell magnetic order in the pseudogap state of high-*Tc* superconductors

Y. Sidis

Laboratoire Léon Brillouin CEA-CNRS, CEA Saclay

GDR mico- 2013 - Gif sur Yvette

P. Bourges (CEA), Y. Sidis (CNRS) B. Fauqué (PHD:04-07), V. Balédent (PHD:07-10), L. Mangin-Thro (PHD) (Laboratoire Léon Brillouin - Saclay)

YIZ: YBa₂Cu₃O_{6+x}

D. Haug, C.T. Lin, V. Hinkov (MPI Stuttgart)
X Chaud (CRETA, Grenoble), A.Wildes (ILL-Grenoble)
H.A. Mook (Oak Ridge, USA)

Hg1201: HgBa₂CuO_{4+x}

Yuan Li (MPI), M. Chan (University Minnesota)
M. Greven (University Minnesota, USA)
P. Steffens (ILL-Grenoble)

La214: La_{2-x}Sr₂CuO₄

•K. Conder, E. Pomjakushina, N. Christensen (Riso), J. Mesot (PSI, Switzerland)

Bi2212: Bi₂Sr₂CaCu₂O_{8+x}

- I. Laffez, F. Giovanneli (IUT-Bois),
 S. De Almeida-Didry(PHD: 07-10)
- •L. Ammor, A. Ruiter(LEMA-Tours)

outline

1/ Introduction to the phenomenology of the Pseudo-gap
2/ Density wave instabilities vs Pseudo-gap
3/ Loop current model of the Pseudo-gap
4/ Intra-unit-cell magnetic order & Pseudo-gap
5/ Hole doping dependence of the IUC magnetic order
6/ Conclusion

Phase diagram of HTc cuprates and d-wave superconductivity

2D Fermi surface $T > T_c$

(Fermi liquid)

d-wave superconducting gap $T < T_c$

Introduction to the physics of the pseudo-gap state

- Depletion of the electronic density of states at the Fermi level below T*

<u>Tunneling</u> <u>spectroscopy:</u> Renner, PRL 1998

- First observed in NMR measurements as an anomalous decrease of the uniform magnetic susceptibility <u>NMR</u>: Alloul et al (PRL 1989)

- The pseudo-gap gives rise to severals anomalies at T* in transport and thermodynamic measurements <u>Review</u>: Timusk, Rev. Mod Phys 2002

Partial gap opening

Persistence of Fermi arcs

<u>ARPES:</u> Kanigel, Nature 2006

Two Energy scales

Le Tacon, Nature Physics 2006

Hufner, Rep. Phys. Prog 2008

the PG phase is a true symmetry breaking state

?

?

Resonant Ultra-sound spectroscopy

A. Shekhter et al. Nature 2013

the pseudo-gap phase :

- a long range ordered state **YES**
- order parameter
- the broken symmetry

outline

1/ Introduction to the phenomenology of the Pseudo-gap
2/ Density wave instabilities vs Pseudo-gap
3/ Loop current model of the Pseudo-gap
4/ Intra-unit-cell magnetic order & Pseudo-gap
5/ Hole doping dependence of the IUC magnetic order
6/ conclusion

Density Wave instability vs Pseudogap

$Pb_{0.55}Bi_{1.5}Sr_{1.6}La_{0.4}CuO_{6+\delta}$ (Pb-Bi2201, Tc = 38 K, T = 132 ± 8 K)

SD (dB

Anomalies at T* in :

- Polar Kerr Effect
- ARPES
- Time resolved Reflectivity

Rui Han He et al., Science 2011

- STM spectroscopy
- Fluctuating charge modulations at:
- $Q^* = (\delta, 0)$ and $(0, \delta)$ with $\delta \sim 1/4$

C. V. Parker et al., Nature 2010

Density Wave instability vs Pseudogap

YBa₂Cu₃O_{6+x}

glassy SDW : T_{SDW} << T* (neutron, μSR, RMN)

Haug, New J. Phys. 2010 T. Wu et al., PRB 2013 anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

Incipient CDW – $T_m < T^*$

 $Q^* = (\delta, 0)$ and $(0, \delta)$ with $\delta \sim 0.3$ Chang, Nature Phys. 2012

Ghiringhelli, Science 2012

Density Wave instability vs Pseudogap

YBa₂Cu₃O_{6+x}

glassy SDW : T_{SDW} << T* (neutron, μSR, RMN)

Haug, New J. Phys. 2010 T. Wu et al., PRB 2013 anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

Incipient CDW – $T_m < T^*$

 $Q^* = (\delta, 0)$ and $(0, \delta)$ with $\delta \sim 0.3$ Chang , Nature Phys. 2012 Ghiringhelli, Science 2012

> Stable CDW under magnetic field & Fermi surface reconstruction (NMR, quantum oscillation, ultrasound)

D. LeBoeuf, *Nature* 2007.T. Wu et al., *Nature* 2011.D. LeBoeuf et al., *Nature Physics* 2013.

outline

1/ Introduction to the phenomenology of the Pseudo-gap
2/ Density wave instabilities vs Pseudo-gap
3/ Loop current model of the Pseudo-gap
4/ Intra-unit-cell magnetic order & Pseudo-gap
5/ Hole doping dependence of the IUC magnetic order
6/ Conclusion

The Loop Current model for the Pseudogap

LC state : phase Θ -II

the pseudo-gap phase :

- a long range ordered state
- order parameter
- the broken symmetry

YES Circulating Current loops in CuO₂ unit cell Time Reversal Symmetry LC order : Intra-unit-cell magnetic order

C.M. Varma, PRB 1997; PRB 2006

Staggered orbital-like moments "a magnetic fingerprint" What are we looking for ?

S. Di Matteo et al., PRB 2012

Possible observation

a) Neutron scattering

Varma PRB 1997

Fauque, PRL 2006

b) X-ray diffraction & absorption

Di Matteo, PRB 2003

Kaminski, Nature 2002

c) Bi-refringence

Varma, arXiv1310.8275

Armitage, arXiv 1310.2265

outline

1/ Introduction to the phenomenology of the Pseudo-gap
2/ Density wave instabilities vs Pseudo-gap
3/ Loop current model of the Pseudo-gap
4/ Intra-unit-cell magnetic order & Pseudo-gap
5/ Hole doping dependence of the IUC magnetic order
6/ Conclusion

LC order : Intra-unit cell magnetic order

C.M. Varma, PRB 1997; PRB 2006

Staggered orbital-like moments "a magnetic fingerprint"

Novel magnetic order in the pseudogap state

Spin polarized neutron diffraction technique

B. Fauqué et al., PRL 2006 H.A. Mook et al., PRB 2007

Broken time-reversal symmetry ARPES

Dichroism in ARPES

Kaminski, Nature 2002

Broken time-reversal symmetry Polarized neutron difffraction

polarized neutron

S. De Almeida-Didry, PRB 2012 Y. Sidis & P. Bourges, arXiv:1306.5124

Generic phase diagram

Novel magnetic order in the pseudogap state

Temperature (K)

Y. Li et al., Nature 2008 Y. Li et al., PRB 2011 P. Bourges & Y. Sidis, C.R. Physique 2011

outline

1/ Introduction to the phenomenology of the Pseudo-gap
2/ Density wave instabilities vs Pseudo-gap
3/ Loop current model of the Pseudo-gap
4/ Intra-unit-cell magnetic order & Pseudo-gap
5/ Hole doping dependence of the IUC magnetic order
6/ Conclusion

From lightly to optimally doped cuprates

Y. Li et al., Nature 2008 P. Bourges & Y. Sidis, C.R. Physique 2011

From lightly to optimally doped cuprates

 $La_{2-x}Sr_{x}CuO_{4}$ (p ~ 0.08) T_{mag} ~120 K

 $Bi_2Sr_2CaCu_2O_{8+\delta}$ (p ~ 0.18) T_{mag} ~190 K

De Almeida-Didry et al, PRB-RC 2012 L. Mangin-Thro et al, unpublished

From lightly to optimally doped YBa₂Cu₃O_{6+x}

V. Balédent et al, PRB 2011

L. Mangin-Thro et al, unpublished

L. Mangin-Thro et al, in preparation 2013

Shortening of the magnetic correlation length ?....

L. Mangin-Thro et al, in preparation 2013

Shortening of the magnetic correlation length ?.... Role of disorder ?....

V. Baledent et al., PRB 2011

L. Mangin-Thro et al, in preparation 2013

H.A. Mook et al., PRB 2008

YBa₂Cu₃O_{6+x}: shortening of the correlation length

Magnetic form factor

Unusual magnetic order

HgBa₂CuO_{4+x}

De Almeida-Didry et al, PRB-RC 2012 L. Mangin-Thro et al, unpublished

outline

1/ Introduction to the phenomenology of the Pseudo-gap
2/ Density wave instabilities vs Pseudo-gap
3/ Loop current model of the Pseudo-gap
4/ Intra-unit-cell magnetic order & Pseudo-gap
5/ Hole doping dependence of the IUC magnetic order
6/ Conclusion

Pseudogap Density wave instabilities IUC order

glassy SDW

Haug, New J. Phys. 2010

IUC magnetic order

Balédent, PRL 2011

Anomaly in the 2nd derivative of the magnetization

Leridon, EPL 2009

Kerr effect

Xia, PRL 2008

Incipient CDW

Chang , Nature Phys. 2012 Ghiringhelli, Science 2012

Pseudogap Density wave instabilities IUC order(s)

Broken rotational symmetry In spin fluctuations

glassy SDW

Haug, New J. Phys. 2010

IUC magnetic order

Balédent, PRL 2011

Anomaly in the 2nd derivative of the magnetization

Leridon, EPL 2009

a-b anisotropy in Nernst coefficient

Daou, Nature 2010

Kerr effect

Xia, PRL 2008

Incipient CDW

Chang , Nature Phys. 2012 Ghiringhelli, Science 2012

Conclusion: Mind the oxygen !.....

IUC- charge order (Q=0) Electronic nematic state

Fischer & Kim, PRB 2011, PRB 2012 IUC- magnetic order (Q=0) Orbital magnetism

C.M. Varma, PRB 2006

A.S. Moskvin, JETP Lett. 2012

Multi-band model

Quadrupolar Charge order ($Q^* \neq 0$)

K. B. Efetov, H. Meier, and C. Pépin, Nature Physics 2013

2017 ???

CuO₂ unit cell Cu^{2+} Cu^{2+} 0^{2-}

IUC- charge order (Q=0) Electronic nematic state

IUC- magnetic order (Q=0) Orbital magnetism

Spin or orbital moments

QWD order (Q≠ 0)

Current loops versus other spin/charges instabilities

Charge & spin stripes

Breaks the C_{4v} rotational symmetry + the lattice translation invariance (when static)

La_{2-x}Ba_xCuO₄ (La,Nd)_{2-x}Sr_xCuO₄

Tranquada, Nature 1995

Charge & spin nematicity

the C_{4v} rotational symmetry is spontaneously broken: a *net a-b* anisotropy shows up in transport and neutron scattering measurements

YBa₂Cu₃O_{6+x}

Ando, PRL 2002 Hinkov , science 2008 Daou, Nature 2010

Intra-unit-cell nematicity

the C_{4v} rotational symmetry is spontaneously within the unit cell :

Oxygens along a and b do not play the same role according to STM measurements

 $Bi_2Sr_2CaCu_2O_{8+\delta}$

Lawler, Nature 2010 Fischer & Kim, PRB 2011

Characteristic wave vectors

• q=0 IUC order(s)

 q_{CDW} = ± (ϵ , 0) and / or (0, ϵ)

$$\mathbf{q}_{\mathsf{SDW}} = \mathbf{q}_{\mathsf{AF}} \pm (\delta, 0)$$
 and / or (0, δ)

La124

* X-ray + neutron

Tranquada , Treatrise of high temperature superconductivity, eds J R Schrieffer2007 Yamada , PRB 1998 Tranquada ,Nature 1995 Axe, PRB 1996 Tranquada , PRL 1997 Niemöller ,EPJ B 1999 Zimmermann , EPJ B 1998 Hucker, PRB 2011

Y123

* X-ray Chang, arXiv:1206.4333 Ghiringhelli, arXiv:1207.0915 * Neutron Haug, New J. Phys. 2010 Dai, PRB 2001

Bi2212

* STM Y. Kohsaka, Nature 2008 Mesaros. Science 2011

Broken time-reversal symmetry ARPES

Dichroism in ARPES

Broken time-reversal symmetry Polarized neutron difffraction

 $Bi_2Sr_2CaCu_2O_{8+\delta}$

S. De Almeida-Didry, to appear in PRB 2012 (ab-resistivity) H. Raffy et al., Physica C 2007

Kaminski, Nature 2002

0.1

Hole doping x

0.2

0.3

0

0

Quantum *flips* from the ground

He & Varma, PRL 2011

Dynamic hallmark

Collective magnetic excitations

