

Effects of an heterogeneous distribution of the oxidation states on the magnetic properties of transition metal oxide.

♦ SrFe_{0.5}Co_{0.5}O_{2.5+y} (Chem. Mater., (2012), 24, 1128-1135)

 $Phase 1212 (Mo_{x}Cu_{1-x})Sr_{2}LnCu_{2}O_{7+y}$ (J. Solid State Chem. (2012) 191, 40-45)

O. Toulemonde

Institut de Chimie et de la Matière Condensée de Bordeaux - CNRS Université de Bordeaux I

ICMCB-CNRS, Université Bordeaux 1 - 87 avenue du Dr. Albert Schweitzer - 33608 Pessac (France) www.icmcb-bordeaux.cnrs.fr

Ferromagnetic Properties of SrFe_{1-x}Co_xO₃ Synthesized under **High Pressure**

Solid State Sciences 3 (2001) 57-63

Magnetoresistance in the ferromagnetic metallic perovskite $SrFe_{1-x}Co_xO_3$

Antoine Maignan *, Christine Martin, Ninh Nguyen, Bernard Raveau

ICMCB-CNRS, Université Bordeaux 1 - 87 avenue du Dr. Albert Schweitzer - 33608 Pessac (France) www.icmcb-bordeaux.cnrs.fr

Solid State Sciences 3 (2001) 57-63

Magnetoresistance in the ferromagnetic metallic perovskite $SrFe_{1-x}Co_xO_3$

Antoine Maignan *, Christine Martin, Ninh Nguyen, Bernard Raveau

Post-annealled in oxygen pressure of "only 15 Mpa" \rightarrow oxygen vacancies y

université de BORDEAUX > The oxygen deficiency y increases continuously with the cobalt content until x=0.7

Solid State Sciences 3 (2001) 57-63

Magnetoresistance in the ferromagnetic metallic perovskite $SrFe_{1-x}Co_xO_3$

Antoine Maignan *, Christine Martin, Ninh Nguyen, Bernard Raveau

Post-annealled in oxygen pressure of "only 15 Mpa" \rightarrow oxygen vacancies y

Cubic lattice is kept <> oxygen vacancies disordering

UNIVERSITÉ DE BORDEAUX Cu 1212 phase : $(Fe_{1-z}Co_z)Sr_2YCu_2O_{6+y}$

Journal of Physics: Conference Series 150 (2009) 052166

ICMCB-CNRS, Université Bordeaux 1 - 87 avenue du Dr. Albert Schweitzer - 33608 Pessac (France) www.icmcb-bordeaux.cnrs.fr

✓The oxidation of cobalt cations requires higher oxygen pressure than for iron

✓ Does any random distribution of the oxidation states occur (with Fe⁴⁺ » Co⁴⁺) on mixed Fe/Co materials SrFe_{0.5}Co_{0.5}O_{2.5+y}?

OR

✓ Does the ratio Fe^{4+}/Co^{4+} is equal to 1 suggesting a charge transfer phenomenon $Co^{3+} + Fe^{4+} \leftrightarrow Co^{4+} + Fe^{3+}$

✓ What would be the consequence on the magnetic properties, electronic conductivities ?

\checkmark SrFe_{0.5}Co_{0.5}O_{2.5+y} (Standard Solid State synthesis)

- Y = 0.18 as prepared (air / 1050°C)
- Y = 0.25 post annealed $O_2 / 600^{\circ}C$
- Y = 0.33 Room Temperature Electrochemical oxidation process
- y \rightarrow 0.5 RT Electrochemical oxidation process

Oxygen deficiency controlled by Mohr Salt Tm⁴⁺ titration

✓ OUTLINE

$SrFe_{0.5}Co_{0.5}O_{2.5+y}$ (0.18<y<0.33)

<u>Structure-Property Relationships In Solid State Materials</u> Structure crystalline and electronic (oxidation state)

- X-Ray & Electron diffractions studies versus oxygen deficiency
- Mossbauer Spectroscopy + Mohr Salt titration \rightarrow Chemical formulas
- Magnetization versus oxygen deficiency
- Conclusions & remarks

XRD paterns / Cubic symetry P m-3m

У	Lattice parameter (Å)
0.18	3.86833(4)
0.25	3.85794 (5)
0.33	3.83611 (11)
0	3.8335(1)

✓The broadening of the peaks does not concern the same crystallographic directions and cannot be attributed to an usual cell distortion.

> UNIVERSITÉ DE BORDEAUX

ICMCB-CNRS, Université Bordeaux 1 - 87 avenue o

$SrFe_{0.5}Co_{0.5}O_{2.68}$ Oxygen vacancies Ordering Phenomenon

$\sqrt{2a_p} \times 2\sqrt{2a_p} \times 4a_p$: Anion vacancies ordering

As expected, the oxygen vacancies ordering related to

•Sr₃LnCo₄O_{10.5} (the so-called "314" phase) stacking sequence of O_h -T_d •Sr₄Fe₄O₁₁ phase / stacking sequence of O_h -SbPy

Susana Garcia-Martin « Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain »

Studied Samples y = 0.17	DIS	δ (mm.s ⁻¹)	Relative Abundance (%)	H _{hf} (T)
fresh	А	0.03	40	/
	В	0.03	60	10.8
old	А	0.04	39	/
	В	0.05	46	0.7
	С	0.39	15	/

RT Mossbauer Spectroscopy Study:

 ✓ only Fe⁴⁺ is present on fresh sample

✓ RT : On the edge the ordered Temperature

 ✓ Fe³⁺ appears with ageing but remains paramagnetic contrary to Fe⁴⁺ at RT

Studied Samples y = 0.17	DIS	δ (mm.s⁻¹)	Relative Abundance (%)	H _{hf} (T)
fresh	А	0.03	40	/
	В	0.03	60	10.8
old	A	0.04	39	/
	В	0.05	46	0.7
	С	0.39	15	/

Mohr Salt titration Tm⁴⁺ RT Mossbauer Spectroscopy

 $Fresh: Sr^{2+}Fe^{4+}_{0.50}Co^{3+}_{0.34}Co^{4+}_{0.16}O_{2.83}$

hypothesis 1 $Sr^{2+}Fe^{4+}_{0.40}Fe^{3+}_{0.10}Co^{3+}_{0.44}Co^{4+}_{0.06}O_{2.73}$

hypothesis 2 $Sr^{2+}Fe^{4+}_{0.40}Fe^{3+}_{0.10}Co^{3+}_{0.34}Co^{4+}_{0.16}O_{2.78}$

Oxygen Content deduced from the proposed cation oxidation state distribution

ICMCB-CNRS, Université Bordeaux 1 - 87 avenue du Dr. Albert Schweitzer - 33608 Pessac (France) www.icmcb-bordeaux.cnrs.fr

 $Co^{3+}-O(2p)-Co^{4+}$ and $Co^{4+}-O(2p)-Co^{4}$ super exchange give T_c around 275±5K

- FCC Elec Chem Oxi

320 340

360

Hypothesis 1 (both $\rm Fe^{4+}$ and $\rm Co^{4+}$ are reduced on the same way)

 $Sr^{2+}Fe^{4+}_{0.40}Fe^{3+}_{0.10}Co^{3+}_{0.44}Co^{4+}_{0.06}O_{2.73}$

Hypothesis 2 (Only Fe⁴⁺ is reduced / the Co^{4+} content is kept)

 $Sr^{2+}Fe^{4+}_{0.40}Fe^{3+}_{0.10}Co^{3+}_{0.34}Co^{4+}_{0.16}O_{2.78}$

UNIVERSITÉ DE BORDEAUX XRD paterns / Cubic symetry P m-3m

SrFe _{0.5} Co _{0.5} O _{2.5+y}		
У	Lattice parameter (Å)	
0.18	3.86833(4)	0
0.25	3.85794 (5)	-
0.33 / old	3.8385(2) Å	
0.33 / fresh 3.83611 (11)		
0 3.8335(1)		
Magnetoelastic effect coinciding with the magnetic transition ?		

Conclusions on SrFe_{0.5}Co_{0.5}O_{2.5+y}

> T_c can be tuned by the oxygen content around RT

The high T_c of FM transition suggests
that a significant number of Co⁴⁺ cations is kept upon reduction (ageing)

> Only Fe⁴⁺ cations would contribute to the FM interaction at RT. (temperature dependence of Mossbauer spectroscopy and XMCD are planned).

> The average distribution of Co4+ and Fe4+ often considered is wrong.

On a synthesis done by an oxidation process : Fe^{4+} content is larger than the Co⁴⁺ one's. On a synthesis done by a reduction process ? $SrFe_{0.5}Co_{0.5}O_{2.5} \leftrightarrow SrFe_{0.5}Co_{0.5}O_{2.75} \leftrightarrow SrFe_{0.5}Co_{0.5}O_{3.5}$

Effects of an heterogeneous distribution of the oxidation states on the magnetic properties of transition metal oxide.

○ Manganites : Ln_{0.5}Ca_{0.5}MnO_{3-y} Mn↔Co,Ni

From XAS (Ni²⁺ or Co²⁺) + Mn⁴⁺ (Toulemonde Solid State Com. 2001 / Burnus Phys. Rev B 2008)

◦ HTCS : $(Mo_xCu_{1-x})Cu-1212$ phase during an annealing process under oxygen $Mo^{5+}_{1-x}Mo^{6+}_{x} + Cu^{2+}Cu^{3+} \leftrightarrow Mo^{5+}_{1-x}Mo^{6+}_{x} + Cu^{2+}_{1+x}Cu^{3+}_{1-x}$ charge transfer equation in relation with transition to superconducting state (Marik JSSC 2012)

de la Matière Condensée de Bordeaux

$Mo_{0.3}Cu_{0.7}Sr_2ErCu_2O_y$

Sample	AP	OA	НРО
Synthesis	1273 K Air 48 hours	873K O ₂ 48h Cooling rate 0.5 K/min	Belt HP KClO ₃ (~33 mol%)
Y (from ND)	7.35	7.45	7.55
T _c	/	33K	84K

Counts/s

Acknowledgments:

Dr J. Abel Master's degree /now « Pôle Pluridisciplinaire de la Matière et de l'Environnement » Université de la Nouvelle-Calédonie / y= 0.18 & y = 0.33

Dr C. Yin « Soprano » Post-Doc / now MPI für Festkörperforschung Stuttgart » / y= 0.25 and y=0

>Dr. A. Wattiaux (Mossbauer Spectroscopy) ; Dr. E. Gaudin (XRD)

>Dr S. Garcia-Martin from UCM (Electron Diffraction)

Financial support given by

- " Spin and Orbital Physics: Research of Advanced New Oxides" FP7- PEOPLE - 2007 -ITN-214040 (2008-2012)
- " **RM**²" Energy research program from CNRS

