IXS sous pression dans les systèmes d'électrons f

Groupe De Recherche Matériaux et Interaction en COmpétition

RIXS vs INS

Sr₂CuO₃

Schlappa et al., Nature (2012)

 $CaCu_2O_3$

Bisognio et al., arXiv:1310.8346

small sample magnetic and non magnetic excitations

Why pressure matters ?

Non disorder parameter Delocalization Metal Insulator Transition Crystal Electric Field Magnetic collapse **Valence change** Orbital occupation **Structural transition** Anisotropy **Superconductivity**

→New methods of investigation

Outline

- *f*-electron delocalization
- Catching up *f*-electrons
- Perspectives at SOLEIL

Outline

- f-electron delocalization : IXS / Ce / CeCu₂Si₂
- Catching up f-electrons
- Perspectives at SOLEIL

Mixed-valent state

Mixed valence defined as a quantum **supersposition** of *f*-states

$$|g\rangle = c_0 |4f^0\rangle + c_1 |4f^1\rangle + c_2 |4f^2\rangle$$

lifting in presence of a core-hole;

 $|f\rangle \qquad |\underline{c}4f^{0}\rangle \\ |\underline{c}4f^{1}\underline{v}\rangle \\ |\underline{c}4f^{2}\underline{v}^{2}\rangle$

this is the case in core-hole spectroscopy (XAS, XPS)

Fuggle, Gunnarson et al., PRB 27 (1983), 7330.

IXS/RIXS process

pressure sample environment

RIXS cross section

JPR et al. RMP 82, 2010

4974

Getting sharp

sharpening effects :

$$\frac{d^2\sigma}{d\omega_1 d\omega_2} = \sum_f \left| \sum_n \frac{\langle f|T_2| \rangle \langle n|T_1|g \rangle}{E_g - E_n + \hbar\omega_1 - i\frac{\Gamma_n}{2}} \right|^2 \times \frac{\Gamma_f/2\pi}{(E_g - E_f + \hbar\omega_1 - \hbar\omega_2)^2 + \frac{\Gamma_f^2}{4}}$$

$$\Gamma_{RIXS} = \sqrt{1/\Gamma_n^2 + 1/\Gamma_f^2}^{-1} \sim \Gamma_f$$
$$(\Gamma_f \ll \Gamma_n)$$

Kvashnina et al., J. Anal. At. Spec. **26** (2011), 1265

Looking for valence change

2p3d-RIXS:

splitting of mixed f states
resonance & sharpening effect
accurate determination of valence state

C. Dallera, JPR et al., PRL 88 (2002), 196403.

2p3d RIXS in Ce

ID12 (ESRF)

Force

diamond anvil cell

X-ray bea

Perforated diamond

JPR et al., Phys. Rev. Lett. **93** (2004), 067402. and Phys. Rev. Lett. **96** (2006), 237403.

2p3d RIXS in Ce

Complete characterization of the f-sta

Combination of XAS + RXES + AIM calcul

Valence increase at high pressure :

	hybridization f-states						
		↓	↓ ·	+	$\overline{}$		
Phase	P (kbar)	V (eV)	$4f^0$ (%)	$4f^1$ (%)	$4f^2$ (%)	n_f	$T_{\rm K}$ (K)
Ce (γ)	0	0.31	5.1	92.5	2.4	0.97	70 ± 10
-	10	0.34	7.7	89.6	2.7	0.95	$200{\pm}50$
Ce (α)	20	0.43	21.9	74.7	3.4	0.81	$1700{\pm}200$

JPR et al., Phys. Rev. Lett. **93** (2004), 067402. and Phys. Rev. Lett. **96** (2006), 237403.

Superconductivity in CeCu₂Si₂

Two-dome superconducting phases near QCPs

Yuan et al., Science (2003)

Superconductivity induced **by valence fluctuations** ?

Onishi and Miyake, J. Phys. Soc. Jap. **69** (2000) ; Holmes et al., J. Phys. Soc. Jap. **76** (2007)

Looking for valence change

ID26 (ESRF)

Perforat

diamond

diamond anvil cell He cryostat

Force —

JPR et al., PRL 106, 186405 (2011)

Calculations in the AIM

Simulation of Ce L_3 in CeCu₂Si₂ in Anderson impurity model :

Parameters

 $U_{\rm ff}=6.0~{\rm eV}$ $U_{\rm fc}(2{\rm p})=U_{\rm fc}(2{\rm p})=10.4~{\rm eV}$ $\epsilon_f, f^0, f^1, f^2, V, W$

T=14 K

JPR et al., PRL 106, 186405 (2011)

Calculations in the AIM

Continuous variation of n_f through P_v (at T=14 K) in agreement with valence fluctuation model providing **T**_{critical} ~ **0 K** Evidence of a new pairing mechanism

JPR et al., PRL 106, 186405 (2011)

Hole-equivalent: YbCu₂Si₂

RXES, $L_{\alpha I}$ line

Kink at P_K is related to **magnetic order** (crossover from intermediate valence and Kondo regime). Unlike CeCu₂Si₂, **no superconductivity** is found

A. Fernandez, JPR et al., PRB, 86, 125104 (2012)

Outline

- f-electron delocalization
- Catching up f-electrons : X-ray Raman Scattering
- Perspectives at SOLEIL

Probing the f electrons

Kvashnina et al., J. Anal. At. Spec. **26** (2011), 1265

Probing the f electrons

N_{4,5} or O_{4,5} edges (4d, 5d \rightarrow f) probe directly the f electrons

Hard x-ray wanted for HP studies

Moore and van der Laan RMP 81 (2009), 298.

X-ray Raman scattering

X-ray Raman scattering

Core transitions with high energy photons (similar to EELS for electrons) using the transition operator :

$$S(\mathbf{q},\omega) = \sum_{f} \left| \langle f | \sum_{j} e^{i\mathbf{q}\cdot\mathbf{r}} | g \rangle \right|^{2} \delta(E_{g} - E_{f} + \hbar\omega)$$

q plays the role of **ε** in soft XAS. But **non dipolar terms** arise at high q :

 $e^{i\mathbf{q}\cdot\mathbf{r}} = 1 + i\mathbf{q}\cdot\mathbf{r} + (i\mathbf{q}\cdot\mathbf{r})^2/2 + \dots$

XRS in 5f electrons

(a) 1.0 1.68 Å⁻¹ 0.5 9.74 Å⁻¹ 0.0 = 1 (b) Intensity (arb. units) = 3 1.0 $U 5f^2$ 0.5 0.0 (C) 2.0 9.88 Å⁻ 9.74 Å⁻ 1.0 9.59 Å⁻¹ 9.38 Å⁻ <u>9</u>.15 Å⁻¹ 0.0 100 105 110 115 120 125 Energy loss (eV) 85 90 95

Caciuffo et al., PRB 81, 195104 (2010)

high-rank multipolar transitions

Ground state orbital occupation

Willers et al. PRL 109 (2012), 046401.

Outline

- f-electron delocalization
- Catching up f-electrons
- Perspectives at SOLEIL : GALAXIES beamline

SOLEIL Synchrotron

26 beamlines

2.75 GeV 354 m 3.74 nm.rad **400 mA**

30 x 80 µm²

RIXS endstation * available in 2014

RIXS station

High resolution / High flux Spectrometer

Rowland circle geometry (0.5-2m)

I + 4-analyzer setup

HAXPES station

Preparation chamber

load lock chamber lon gun, LEED, heating element

Thermionics 4-axis fully **motorized, manipulator** Closed-cycle I 5K cryostat In-situ bias

SCIENTA EW4000 Ec < 12 keV, wide angular lens +/- 30°

motorized frame

Acknowledgment

Synchrotron SOLEIL : J. Ablett, D. Céolin, D. Prieur, V. Balédent, J.-P. Itié, F. Baudelet **ESRF** : G. Monaco, L. Simonelli, P. Glatzel **CEA** : S. Raymond, D. Braithwaite, A. Fernandez Univ. of Geneva : D. Jaccard KIT / ITU : S. Heathman, R. Caciuffo, J.-C. Griveau, G. Lander, M. Denecke IMPMC : A. Shukla, J.-C. Chervin MPI Dresden : H. Tjeng, A. Severing **RIKEN** : M. Taguchi, A. Kotani **CPHT**: L. Pourovskii, A. Georges