

Magnetoelectric coupling in isotope substituted multiferroic TbMnO3

Pauline Rovillain

School of Physics, University of New South Wales, Sydney 2052, Australia The Bragg Institute, ANSTO, Kirrawee DC NSW 2234, Australia

pauline.rovillain@espci.fr

Multiferroic materials

Schmid, Ferroelectrics 162, 317 (1994)

Multiferroics type I and II

Multiferroics type I

- Strong ferroelectrics
- Order temperatures close to room temperature
- x indirect coupling between orders

Multiferroics type II

- x Weak ferroelectrics
- × Low order temperatures
- Strong direct coupling between orders

TbMnO3

Inelastic scattering

Inelastic light scattering : Sir C. Raman (1888-1970) Nobel Price 1930

Raman scattering

Elastic scattering Rayleigh

RMnO3 compounds multiferroics type II

Perovskites RMnO3 : Tb, Gd, Dy

Frustrated magnet with incommensurate magnetic structure

In type II, the FE order appears after the AFM phase

T. Kimura et al. PRB **68**, 060403(R) (2003)

The multiferroic: TbMnO3

Orthorhombic Symmetry Pbnm space group

Sample growth by zone fusion

Strong polarization (type II) P=0.08 μ C/cm2 (BiFeO3=100 μ C/cm2) Giant magnetoelectric effect

TbMnO3 : the static properties

How to explain the strong coupling between the ferroelectric and magnetic orders ? Magnetic ferroelectricity

Spiral spin structure

The spiral spin structure breaks simultaneously the time and spatial inversion

Magnetoelectric effect

..... microscopic scale

Dzyaloshinskii-Moriya Interaction

Sergienko and Dagotto, PRB 73, 094434 (2006)

Katsura, Nagaosa and Baltasky, PRL 95, 057205 (2005)

Effect of the substitution on the phonon frequencies

Effect of the substitution on the magnetism transition

Specific heat measurements

No effect of the substitution in the magnetic temperature transition

[] the Jahn Teller distortion play no role in ferroelectric and magnetism order

Alonso et al. Inorg. Chem., 39, 917 (2000)

Do not follow the empirical law: phonon phonon interaction $\omega ph(T) = -A(1 + \frac{2a}{\exp(\frac{1}{\omega}0/2kBT)-1}) + \omega C$

Meier et al. New Journal of Physics 9, 100 (2007)

Granado et al. PRB 60, 11879 (1999)

<u>Spin- phonon coupling</u> : phonon modulating the exchange integral between interacting atomic spins.

TbMnO3 : Mn3+ ions interact via superexchange (O2-) Mn-O-Mn [] ≠ 180° in the multiferroic phase (T > TC)

Which interaction is at the origin of the ferroelectricity?

Conclusion and Outlooks

Oxygen substitution 18O []16O

Heat capacity measurements:

No effect of the substitution in the magnetic temperature transition

I the Jahn Teller distortion play no role in ferroelectric and magnetism order

Raman scattering:

Observation of a spin-phonon coupling in TbMnO3

Dzyaloshinskii-Moriya Interaction is at the origin of the ferroelectricity

What append to the electromagnons with the substitution ?

Collaborators

P. J. Graham

UNSW, Sydney, Australia

M. Bartkowiak A. M. Mulders

E. Pomjakushina

K. Conder M. Kenzelmann

PAUL SCHERRER INSTITUT

Paul Scherrer Institute, Villigen, Switzerland

Spin-phonon interaction

$$(\Delta \omega_{stret})_{s-ph} \approx -\frac{2}{m\omega_{\alpha}} \frac{\partial^2 J_{xz}}{\partial u_{stret}^2} \left(\frac{M_{sublatt}(T)}{4\mu_B}\right)^2$$

Granado et al. PRB 60, 11879 (1999)

Lattice distortion

Meier et al. New Journal of Physics 9, 100 (2007)

TbMnO3 : the dynamical properties

Degree of freedom

(magnon) Magnetic

Lattice (optical phonons)

Strong coupling

« New » excitations: electromagnons

Magnon with an electric dipole that can be strongly coupled to the electric field of light

Optical conductivity

New peak of spin excitation with a polar activity

Pimenov et al. Nature Phys 2, 97 (2006)A. B. Sushkov, PRL 98, 027202 (2007)

TbMnO3 : difference between experiments and theory

30 K

10

e2

Energy (meV)

2

0

1.0

Observation

TbMnO3 : electromagnons under magnetic field

At high field, the e1 and e2 electromagnons disappear quickly

At 8T, 2 new peaks blow up located at 21 cm-1 and 85 cm-1

P. Rovillain et al. PRL 107, 027202 (2011)

TbMnO3 : electromagnons

P. Rovillain et al. PRL 107, 027202 (2011)