Fermi surface instabilities in YbRh₂Si₂ at high field

G. Knebel,¹ D. Aoki,^{1,2} M. Boukahil,¹ T.D. Matsuda,³ G. Lapertot,¹ A. Pourret,¹ and J. Flouquet¹

¹ SPSMS, UMR-E CEA / UJF-Grenoble 1, INAC, Grenoble, F-38054, France
 ² Institute for Materials Research, Tohoku Univ., Oarai, Ibaraki 311-1313, Japan
 ³ Advanced Science Research Center, JAEA, Tokai, Ibaraki 319-1195, Japan

thanks to H. Harima, Kobe University

Financial support

see : A. Pourret et al. J.Phys. Soc. Jpn. 82 (2013) 053704

outlook

- Introduction
- Some experimental details
- Magnetoresistance of YbRh₂Si₂
- Thermoelectric power through H_0
- Quantum oscillation experiments
- Comparison to band structure calculations

Unconventional metallic state in YbRh₂Si₂

 Yb based heavy fermion system with very low magnetic order

$$\Delta_{\rm CF}$$
= 200, 290, 500 K

• m^{\sim} 0.02 μ_B , but magnetic structure not known

- field induced QCP, $H_c = 0.066$ T, H // a
- above H_c, strong FM fluctuations
 Ishida et al, PRL 89, 107202 (2002)
 Gegenwart et al. PRL 94, 076402 (2005)

Trovarelli et al. PRL 85, 626 (2000) Gegenwart et al. PRL 89, 056402 (2002) Custers et al. nature 2003

Quantum criticality in YbRh₂Si₂ : localized versus itinerant

nD

Kondo breakdown :

- Discrepances with "standard" spin-fluctuation model:
 - J. Custers et al, Nature **424**, 524 (2003)
 - decomposition of heavy fermions ?
 - Divergence of Grüneisen ratio R. Küchler, PRL **91**, 066405 (2003)
- ESR signal of dense Kondo lattice from Yb³⁺ ion :
 - J. Sichelschmidt et al. PRL, **91**, 156401 (2003)
 - strong anisotropic g factor (more than factor 10)
- Hall effect : small → large Fermi surface
 - S. Paschen et al. Nature **432**, 881 (2004)
 - Friedemann et al. PNAS 107 (2010) 14547
 - Destruction of renormalized Fermi surface ?
- Thermodynamic evidence for multiple energy scales at the QCP
 - P. Gegenwart, Science 315, 969 (2007)
- Violation of Wiedemann-Franz (Pfau, Nature 484 (2012) 493)
 - Strongly debated recently (Sherbrooke, Tokyo, Grenoble)
- role of valence fluctuations (Watanabe, Miyake)
- Zeeman driven Lifshitz transition ?

Hackl, Vojta PRL 106 (2011) 137002

¹⁷⁴YbRh₂Si₂: (H - T) phase diagram (H | | a)

Custers nature 2003

2 characteristic fields !

 $H_c=0.066$ T: suppression of AF order $H_0=9.5$ T : suppression of heavy mass

High field properties : $T_{K} \sim T_{zeeman}$

• possible localization of *f* electron

Gegenwart NJP 2006

Lifshitz-type transition through H₀

Kusminskiy et al. PRB 77 (2008) 094419: static mean field theory, Kondo lattice coherence of same order than Zeeman splitting , one band model, parameter exchange J, band filling x

dHvA : Toronto University

Rourke et al. PRL 2008 Sutton et al. PSS 2010 Spin-split FS undergoes a Lifshitz transition:

- spin split branch drops below the chemical potential at B*
- Fermi surface of heavy quasi-particles vanished at B^{*} leaving only moderately heavy particle above B^{*}
- no localization of f electron, but continuous evolution of the Fermi surface.

Experimental details

In flux grown single crystal RRR ~ 65 , not the highest but

resistivity : thermoelectric power : dHvA : 30 mK, 13.5 T 150 mK, 16 T 15 mK top loading dilution, 15 T

$$F = \frac{1}{\Delta \left[\frac{1}{B}\right]} = \frac{\hbar}{2\pi e} S_F \text{ and } S_F = \left|\overrightarrow{k_F}\right|^2$$

Magnetoresistance H || [110]

Magnetoresistance H // [110]

- kink at 3.4 T
- cascade of transitions above $H_0 \sim 9.5 T$

Temperature dependence of $\rho(H)$

Anomalies smeared out with increasing temperature !

Magnetic Phase Diagram from Magnetoresistance

Thermoelectric power

Mott formula

$$S = -\frac{\pi^2 k_B^2 T}{3e} \left(\frac{\partial \ln \sigma(\epsilon)}{\partial \epsilon}\right)_{\epsilon = \epsilon_F}$$

$$S = -\frac{\pi^2 k_B^2 T}{3e} \left(\frac{\partial \ln \tau(\epsilon)}{\partial \epsilon} + \frac{\partial \ln N(\epsilon)}{\partial \epsilon} \right)$$

TEP sensitive to changes:

- **carrier type** (hole, electron)
- scattering rate
- **density of state** (measures the derivative of N)
- Fermi surface topology

- Successive anomalies close to *H*₀
- Change of sign of S(H) close to H_0

TEP : thermoelectric power

excellent agreement with

 \succ

similar results: H. Pfau et al. PRL 110, 256403 (2013)

Temperature dependence of *S*/*T*

For 120 mK < T < 1.5 K:

- - In *T* dependence for H = 0
- - In *T* for H = 11.5 T (close to H_0)

Hartmann et al, PRL 104 (2010) 096401

Phase diagram

- Magnetoresistivity and thermoelectric power indicate field induced transitions.
- Strong indications of topological transitions of the Fermi surface.
- Field scale of Lifshitz transitions given by $k_{\rm B}T_{\rm K} \sim g\mu_{\rm B}H_0$
- TEP is an extremely sensitive probe to detect topological transitions as it is directly determined by *d In N(E)/dE*

Band structure: "small" ↔ "large" Fermi surface

• Zwicknagl JPCM **23** (2011) 094215 renormalized band structure

f character hole-like

- hybridized states
- electron-like
- multilple connected
 Fermi-surface

two main Fermi surfaces :

- hole like donut
- electron-like jungle-gym

See also

- Rourke PRL 101 (2008) 237205, Sutton PSS B247 (2010) 549
- Wigger PRB **76** (2007) 035106
- Yasui PRB 87 (2013) 075131

Angular dependence in plane

observed large FS along [110] not reproduced

Quantum oscillation experiments H // [100] through H_0

Quantum oscillation experiments H // [110] through H_0

gradual field dependence of dHvA frequencies in (a,b) plane through H_0

G. Zwicknagl in Pfau et al. PRL 110, 256403 (2013)

- Anisotropic hybridization of the 4f states with the conduction bands, caused by the highly anisotropic crystalline electric field ground state, leads to van Hove-type singularities in the quasiparticle DOS.
- Lifshitz transition of minority spin band

DOS 100/(eV cell)

Angular dependence dHvA [100] to [001]

about 75 % of the heavy mass is still missing !

LDA bandstructure calculation (Harima)

summary

- topological changes of the Fermi surface as function of magnetic field observed in TEP and resistivity
- observed orbits from the "donut" hole and "jungle-gym" electron Fermi surfaces
- continuous change of dHvA frequencies through H₀
- Lifshitz-transition of spin-splitted bands :"hole" Fermi surface decreases, electron Fermi surface increase through H₀
- up to now Fermi surface determination only in the polarized state, H // [001] incomplete
- determination of Fermi surface in "heavy fermion" state below H₀ still missing

The End

of correlated electrons in Inac?