Towards a general theory for pyrochlores

Towards a general theory for pyrochlores

One theory \Rightarrow three stories

General Phase Diagram of Pyrochlores

Dimensional reduction $\left(\mathrm{Yb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}\right)$

Order by disorder $\left(\mathrm{Er}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}\right)$

Dimensional reduction in $\mathbf{Y b}_{2} \mathbf{T i}_{2} \mathbf{O}_{7}$

- phase transition at $\mathrm{T}_{\mathrm{c}} \sim 240 \mathrm{mK}$
- ferromagnetic order, but sample dependence
- Higgs mechanism (?)
- rods of scattering = dimensional reduction

Hodges et al. PRL 2002
Yasui et al. JPSJ 2003
Cao et al. JPCM 2009
Cao et al. PRL 2009
Ross et al. PRL 2009
Onoda PRB 2011
Ross et al. PRX 2011

Savary, Balents, PRL 2012 Savary, Balents, PRB 2013 Thompson et al. PRL 2011 Applegate et al. PRL 2012 Chang et al. Nat. Com. 2012 Hayre et al. arXiv 2012
D'Ortenzio et al. PRB 2013

Order by disorder in $\mathrm{Er}_{2} \mathbf{T i}_{2} \mathbf{O}_{7}$

- phase transition at $\mathrm{T}_{\mathrm{c}} \sim 1.2 \mathrm{~K}$
- thermal \& quantum order by disorder transition
- physical mechanism of the selection process ?

Champion et al. PRB 2003 Ruff et al. PRL 2008 Champion et al. JPCM 2004 Cao et al. PRL 2009 McClarty et al. JPCS 2009 Stasiak et al. arXiv 2011 Sosin et al. PRB 2010 Zhitomirsky et al. PRL 2012 Bonville et al. JPCM 2013
Dalmas de Réotier et al. PRB 2012

Possible spin liquid in $\mathrm{Er}_{2} \mathrm{Sn}_{2} \mathbf{O}_{7}$

- no transition
- Palmer-Chalker correlations
- what's going on ?

Matsuhira et al. JPSJ 2002 Lago et al. JPCM 2005 Sarte et al. JPCM 2011
Guitteny et al. arXiv 2013

Methodology

quantum fluctuations
$=$
semi-classical spin wave calculations
exact phase diagram via group theory

$$
\left.\right|_{T=0}
$$

Methodology

quantum fluctuations
$=$
semi-classical
spin wave calculations
exact phase diagram via group theory

Methodology

quantum fluctuations
semi-classical
spin wave calculations

exact phase diagram via group theory
for all temperatures
$=$
Monte Carlo simulations

The model

All possible nearest neighbor interactions

$$
\begin{gathered}
\mathcal{H}=\frac{1}{2} \sum_{<i j>} \vec{S}_{i} \hat{J}_{i j} \vec{S}_{j} \\
\hat{J}_{01}=\left[\begin{array}{ccc}
J_{2} & J_{4} & J_{4} \\
-J_{4} & J_{1} & J_{3} \\
-J_{4} & J_{3} & J_{1}
\end{array}\right]
\end{gathered}
$$

Curnoe PRB 2007
McClarty et al. JPCS 2009
Ross et al. PRX 2011

The model

All possible nearest neighbor interactions

$$
\mathcal{H}=\frac{1}{2} \sum_{\langle i j\rangle} \vec{S}_{i} \hat{J}_{i j} \vec{S}_{j}
$$

$$
\hat{J}_{01}=\left[\begin{array}{ccc}
J_{2} & J_{4} & J_{4} \\
-J_{4} & J_{1} & J_{3} \\
-J_{4} & J_{3} & J_{1}
\end{array}\right]
$$

The model

All possible nearest neighbor interactions

$$
\mathcal{H}=\frac{1}{2} \sum_{\langle i j\rangle} \vec{S}_{i} \hat{J}_{i j} \vec{S}_{j}
$$

$$
\hat{J}_{01}=\left[\begin{array}{ccc}
J_{2} & J_{4} & J_{4} \\
-J_{4} & J_{1} & J_{3} \\
-J_{4} & J_{3} & A_{1}
\end{array}\right]
$$

Curnoe PRB 2007
McClarty et al. JPCS 2009
Ross et al. PRX 2011

The model

All possible nearest neighbor interactions

$$
\mathcal{H}=\frac{1}{2} \sum_{\langle i j\rangle} \vec{S}_{i} \hat{J}_{i j} \vec{S}_{j}
$$

Dzyaloshinskii-Moriya
$1 \hat{J}_{01}=\left[\begin{array}{ccc}J_{2} & J_{4} & \left.J_{4}\right] \\ -J_{4} & J_{1} & J_{3} \\ -J_{4} & J_{3} & J_{1}\end{array}\right]$

Curnoe PRB 2007
McClarty et al. JPCS 2009
Ross et al. PRX 2011

What happens at 0 K ?

"Palmer Chalker"

Global U(1) manifold

What happens just above 0 K?

"Palmer Chalker"

Distribution of order parameter $\mathbf{m}_{\mathbf{E}}$

Distribution of order parameter \mathbf{m}_{E}

Distribution of order parameter $\mathbf{m}_{\mathbf{E}}$

Distribution of order parameter \mathbf{m}_{E}

Distribution of order parameter $\mathbf{m}_{\mathbf{E}}$

Origin of Champion-Holdsworth phase in $\mathrm{Er}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ is proximity to

Palmer - Chalker phase

What happens at finite temperature ?

$$
\mathrm{J}_{3}<0, \mathrm{~J}_{4}=0
$$

What happens at finite temperature ?

$$
\mathrm{J}_{3}<0, \mathrm{~J}_{4}=0
$$

Comparison to experiments in $\mathrm{Er}_{2} \mathbf{T i}_{2} \mathbf{O}_{7}$

Vanishing pinch points in $\mathrm{Er}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$

Dimensional crossover in $\mathbf{Y b}_{2} \mathbf{T i}_{2} \mathbf{O}_{7}$

Dimensional crossover in $\mathbf{Y b}_{2} \mathbf{T i}_{2} \mathbf{O}_{7}$

Quantum spin liquid for $\operatorname{Er}_{2} \mathbf{S n}_{2} \mathbf{O}_{7}$

Conclusion

Towards a general theory for pyrochlores

 development of an exact quadratic field theory based on group theory
crucial importance of the phase boundaries with extra continuous degeneracies

responsible for
 dimensional reduction $\left(\mathrm{Yb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}\right)$ ground state selection $\left(\mathrm{Er}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}\right)$ quantum spin liquid $\left(\mathrm{Er}_{2} \mathrm{Sn}_{2} \mathrm{O}_{7}\right)$ and much more ...

