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One theory ➪ three stories

 Dimensional reduction 
(Yb2Ti2O7)

3

E. Relation to prior model

Previous theoretical work [10, 11] proposed the follow-
ing model for Er2Ti2O7:

H = J

�

�i,j�

Si ·Sj+D

�
�

i

Si · êi

�2

, J,D > 0. (22)

In the D = +∞ limit this model corresponds to Jzz =
Jz± = 0 and J± = J/6, J±± = J/3 in the language of
Eq. (6).

III. ILLUSTRATION OF THE Γ5 STATES

FIG. 4. One of the spin states of the U(1) degenerate man-

ifold. The green arrows show the direction of the local âi

axes. The blue arrows denote the spin vectors for one of the

Γ5 states, and the arcs indicate the angle α.

Each state in the α = nπ/3 series is characterized by
a global basis vector along which each of the four spin
projection magnitude is largest:

ma = ± 2√
6
x̂µ ± 1√

6
x̂µ+1 ±

1√
6
x̂µ+2, (23)

where (x̂1, x̂2, x̂3) = (x̂, ŷ, ẑ) is the usual global basis,
and µ is periodic mod 3. For example, for α = 0, where
ma(0) = âa, this axis is the x̂ axis, while for α = π/3,
this axis is the ẑ axis:






m0(π/3) = (−1,−1, 2)/
√
6,

m1(π/3) = (−1, 1,−2)/
√
6,

m2(π/3) = (1,−1,−2)/
√
6,

m3(π/3) = (1, 1, 2)/
√
6.

(24)

Each state in the α = π/6+nπ/3 series is characterized
by a global basis vector along which each of the four spins

α = 0 α = π/6

FIG. 5. α = 0 and α = π/6 spin states

have a zero projection. For example, for α = π/6, this
axis is the ŷ axis:






m0(π/6) = (−1, 0, 1)/
√
2,

m1(π/6) = (−1, 0,−1)/
√
2,

m2(π/6) = (1, 0,−1)/
√
2,

m3(π/6) = (1, 0, 1)/
√
2.

(25)

IV. PROOF OF THE EXISTENCE OF A LOCAL
EXTREMUM

Here we prove that the degenerate states described by
Eq. (2),

m0
j (α) = ρRe

�
e
−iα

�
âj + ib̂j

��
, (26)

are local extrema. To do so, we first note that, in gen-
eral, for a translationally invariant state, the spins can
be written

mi = Φ1âi + Φ2b̂i +
10�

j=1

ψj ĉ
j
i , (27)

where Φ = ρ eiα = Φ1 + iΦ2, Φ1,Φ2,ψj ∈ R, and where
an allowed set of ĉji is such that the twelve-dimensional
vectors made of the concatenation of {âi}i, {b̂i}i and
{ĉji}i are orthogonal to one another for all j = 1, .., 10,

i.e.
�
âT0 · · · âT3

�
·





ĉj0
...

ĉj3




= 0,

�
b̂T
0 · · · b̂T

3

�
·





ĉj0
...

ĉj3




= 0,

and
�
(ĉl0)

T · · · (ĉl3)
T
�
·





ĉj0
...

ĉj3




= 0 for j, l = 1, .., 10 and

j �= l.
Now, to prove that the degenerate states constitute

local extrema, we need only show that the Landau free
energy around this degenerate manifold does not contain
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Dimensional reduction in Yb2Ti2O7
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• phase transition at Tc ~ 240 mK
• ferromagnetic order, but sample
dependence
• Higgs mechanism (?)
• rods of scattering = 
dimensional reduction
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Order by disorder in Er2Ti2O7

• phase transition at Tc ~ 1.2 K
• thermal & quantum order
   by disorder transition
• physical mechanism
   of the selection process ?

Champion et al. PRB 2003
Champion et al. JPCM 2004
McClarty et al. JPCS 2009
Sosin et al. PRB 2010
Zhitomirsky et al. PRL 2012
Bonville et al. JPCM 2013
Dalmas de Réotier et al. PRB 2012
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MAGNETIC ORDER, MAGNETIC CORRELATIONS, AND . . . PHYSICAL REVIEW B 86, 104424 (2012)
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FIG. 14. (Color online) Top two panels: Magnetic diffuse neutron scattering intensity recorded for a crystal of Er2Ti2O7 in the reciprocal
(h,k,0) and (h,k,k) planes at 2.00 (3) and 1.47 (3) K, respectively. The positions in the reciprocal lattice are in 2π/a units, where a is the lattice
parameter of the cubic unit cell. These maps are obtained as explained in the main text. To preserve the maps appearance, pixels with off-scale
intensities, e.g., pixels influenced by Bragg reflections and critical scattering, as well as pixels located near the origin of the reciprocal lattice
have been graphically eliminated: They are represented in white color. Bottom two panels: (h,k,0) and (h,k,k) magnetic correlation maps
computed with the tetrahedron model explained in the main text. The comparison between the theoretical and experimental maps displayed
above enables us to derive information on the Er2Ti2O7 interaction constants. The lines drawn in the (h,k,0) maps indicate the position of the
cuts shown in Fig. 16.

the latter case the loop is in the plane (h,k,0) and centered
around (2,2,0). The scattering properties are therefore quite
different for the two compounds. This reflects the difference
in magnetic symmetry. The origin of the loops observed
in ZnCr2O4, which were originally interpreted in terms of
weakly interacting hexagonal spin clusters, is now taken as
the signature of extended exchange interactions for spin-ice
and isotropic systems.56,57 In the following we show that
the scattering loop in Er2Ti2O7 can basically be taken as a
fingerprint of the properties of the exchange interactions within
a single tetrahedron.

The discussion of the experimental results will be carried
out in two steps. We shall first evaluate the magnetic correlation
length at the temperature of the measurements and then analyze
the maps using a four-spin Hamiltonian.

1. Magnetic correlation length

Here we determine the correlation length of the critical
magnetic correlations. For this purpose we consider the
scattered intensity measured in the vicinity of the reciprocal
positions q(h,k,l) = q(2,2,0) and q(1,1,1) at T = 2.00 and 1.47 K,
respectively; see Fig. 15. This critical scattering intensity is
described by the sum of a Lorentzian function and a constant:

L(|q − q(h,k,l)|) = IL

1 + |q − q(h,k,l)|2/κ2
m

+ I0, (15)

where κm is the inverse of the magnetic correlation length. The
parameter IL accounts for the magnitude of the Lorentzian,
while I0 refers to a neutron intensity which is not related to
critical scattering. Since at the temperature of experiments, the
width of the critical magnetic scattering curve is much larger
than the instrumental resolution, the convolution of Eq. (15)
by the resolution function is unnecessary. The fits shown in
Fig. 15 yield the magnetic correlation lengths ξm = κ−1

m =
3.6 (2) and 6.6 (5) Å for the (2,2,0) and (1,1,1) reflections
measured at 2.00 and 1.47 K, respectively. As expected, ξm
shoots up as the sample is cooled toward the transition. These
two values are comparable with the Er3+-Er3+ ion distance d =
3.56 Å. Hence the analysis of the experimental maps shown
in Fig. 14 can be performed considering the spin correlations
within a single tetrahedron. This is the basis for our quantitative
interpretation which is exposed below.

2. Analysis of the diffuse scattering maps

While our analysis of the magnetic scattering intensity in
the vicinity of reciprocal lattice positions at low temperature
shows that the measured wave vector dependence probes short-
range correlations, a wave vector independent scattering is also
observed; see Fig. 15. This scattering reflects local physics, for
example of crystal-field nature. Denoting M(q) a measured

104424-9
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j
i , (27)

where Φ = ρ eiα = Φ1 + iΦ2, Φ1,Φ2,ψj ∈ R, and where
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ĉj3




= 0,

and
�
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T
�
·




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




m0(π/6) = (−1, 0, 1)/
√
2,

m1(π/6) = (−1, 0,−1)/
√
2,

m2(π/6) = (1, 0,−1)/
√
2,

m3(π/6) = (1, 0, 1)/
√
2.

(25)

IV. PROOF OF THE EXISTENCE OF A LOCAL
EXTREMUM

Here we prove that the degenerate states described by
Eq. (2),

m0
j (α) = ρRe

�
e
−iα

�
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âT0 · · · âT3
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Possible spin liquid in Er2Sn2O7

• no transition
• Palmer-Chalker correlations
• what’s going on ?

Matsuhira et al. JPSJ 2002
Lago et al. JPCM 2005
Sarte et al. JPCM 2011
Guitteny et al. arXiv 2013



Methodology

exact phase diagram
via group theory

quantum fluctuations
=

semi-classical
spin wave calculations

T = 0
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Methodology

exact phase diagram
via group theory

quantum fluctuations
=

semi-classical
spin wave calculations

T = 0

thermal fluctuations
=

spin wave calculations

Tc

``paramagnetic’’

for all temperatures
=

Monte Carlo simulations
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Global U(1)
manifold

Er2Ti2O7

×

×
Yb2Ti2O7

What happens at 0 K ?
J3 < 0, J4 = 0

“Palmer - 
Chalker”

Er2Ti2O7

××
Yb2Ti2O7
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What happens just above 0 K ?
J3 < 0, J4 = 0

“Champion - 
Holdsworth”

“Palmer - 
Chalker”



Distribution of order parameter mE



Distribution of order parameter mE
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Distribution of order parameter mE

Origin of Champion-Holdsworth 
phase in Er2Ti2O7 is proximity to 

Palmer - Chalker phase



What happens at finite temperature ?

J3 < 0, J4 = 0



What happens at finite temperature ?

J3 < 0, J4 = 0



Comparison to experiments in Er2Ti2O7

simulations

experiments

Dalmas de Réotier et al. PRB 2012



Vanishing pinch points in Er2Ti2O7



Dimensional crossover in Yb2Ti2O7



Dimensional crossover in Yb2Ti2O7



Quantum spin liquid for Er2Sn2O7



Conclusion

Towards a general theory for pyrochlores
development of an exact quadratic field theory based on group theory

crucial importance of the phase boundaries
with extra continuous degeneracies

responsible for
dimensional reduction (Yb2Ti2O7)
ground state selection (Er2Ti2O7)
quantum spin liquid (Er2Sn2O7)

and much more ...


