GDR Mico

Imaging magnetic fields at the nanoscale: NV microscopy

Thomas Hingant

J.-P. Tétienne, L. Rondin, J.-F. Roch, V. Jacques

*

S. Rohart, A. Thiaville

*

L. Herrera Diez, K. Garcia, J.-V. Kim, J.-P. Adam, D. Ravelosona

Plan

I. Presentation of NV microscopy

II. Recent experiments on domain walls in ultrathin ferromagnets

Plan

I. Presentation of NV microscopy

 $|B_{\rm NV}|$ (mT)

II. Recent experiments on domain walls in ultrathin ferromagnets

Magnetization measurement

Fischer P. et al. PRB **83**, 212402 (2011)

Romming N. et al. Science **341**, 636 (2013)

Magnetization measurement

⊗ strong experimental constraints
(vacuum, sample thickness, synchrotron...)

X Rays SP-STM

Fischer P. et al. PRB **83**, 212402 (2011)

Romming N. et al. Science **341**, 636 (2013)

Magnetization measurement

Strong experimental constraints (vacuum, sample thickness, synchrotron...)

X Rays

Fischer P. et al. PRB **83**, 212402 (2011)

Romming N. et al. Science **341**, 636 (2013)

SP-STM

Stray field measurement

Magnetization measurement

Strong experimental constraints (vacuum, sample thickness, synchrotron...)

X Rays SP-STM

Fischer P. et al. PRB **83**, 212402 (2011)

Romming N. et al. Science **341**, 636 (2013)

Stray field measurement

MFM

Magnetization measurement

⊗ strong experimental constraints(vacuum, sample thickness, synchrotron...)

X Rays SP-STM

Fischer P. et al. PRB **83**, 212402 (2011)

Romming N. et al. Science **341**, 636 (2013)

Stray field measurement

MFM

🙂 versatile

nanoscale resolution

Magnetization measurement

⊗ strong experimental constraints(vacuum, sample thickness, synchrotron...)

X Rays SP-STM

Fischer P. et al. PRB **83**, 212402 (2011)

Romming N. et al. Science **341**, 636 (2013)

Stray field measurement

MFM

🙂 versatile

© nanoscale resolution

J. M. Garcia et al. APL **79**, 5 (2001)

Magnetization measurement

Strong experimental constraints (vacuum, sample thickness, synchrotron...)

X Rays SP-STM

Fischer P. et al. PRB **83**, 212402 (2011)

Romming N. et al. Science **341**, 636 (2013)

Stray field measurement

MFM

- 🙂 versatile
- © nanoscale resolution
- 🙁 magnetic back action
- Ardly quantitative

J. M. Garcia et al. APL **79**, 5 (2001)

Attaching a single spin at the end of a tip

Attaching a single spin at the end of a tip

B. Chernobrod et al., J. Appl. Phys. 97, 014903 (2005)

B. Chernobrod et al., J. Appl. Phys. **97**, 014903 (2005)

NV defect in diamond: colour centre

Atom-like defect, trapped in the diamond matrix

excited state

excited state

optical pumping into $| m_s = 0 >$

excited state

- optical pumping into $| m_s = 0 >$
- spin dependent photoluminescence

excited state

- optical pumping into $| m_s = 0 >$
- spin dependent photoluminescence

excited state

- optical pumping into $|m_s = 0 >$
- spin dependent photoluminescence

- optical pumping into $|m_s = 0 >$
- spin dependent photoluminescence

Spin properties and ODMR

- optical pumping into $|m_s = 0 >$
- spin dependent photoluminescence

Single NV at the apex of the AFM tip

L. Rondin et al. Appl. Phys. Lett. 100, 153118 (2012)

L. Rondin et al., Nat. Comm. 4, 2279 (2013)

Imaging ferromagnetic vortices

one RF frequency ||| one magnetic field value

one RF frequency ||| one magnetic field value

|B_{NV}|=0.9 mT

one RF frequency ||| one magnetic field value

|B_{NV}|=0.9 mT

|B_{NV}|=1.3 mT

- iso-B: 40 ms per pixel
- full-B: 200 ms per pixel

Full-B recording

resolving power limited by probe to sample distance

resolving power limited by probe to sample distance

nm detail

Plan

I. Presentation of NV microscopy

II. Recent experiments on domain walls in ultrathin ferromagnets

Motivations

Domain walls in ultrathin ferromagnets with perpendicular anisotropy are of fundamental interest for spintronic

S. S. P. Parkin et al. Science 320, 190 (2008)

Motivations

Domain walls in ultrathin ferromagnets with perpendicular anisotropy are of fundamental interest for spintronic

S. S. P. Parkin et al. Science 320, 190 (2008)

- understanding the pinning
- determining the chirality of the walls (wall motion)

Motivations

Domain walls in ultrathin ferromagnets with perpendicular anisotropy are of fundamental interest for spintronic

S. S. P. Parkin et al. Science **320**, 190 (2008)

understanding the pinning

• determining the chirality of the walls (wall motion)

AFM

AFM

Thermally-activated domain wall hopping (or Barkhausen jumps) observed:

- in real time
- in real space
- at room temperature
- in zero magnetic field

Tip on site 2 1 → 2 2 → 1 1 **→** 2 Switching rate f (Hz) 0.15 0.10 0.05 2 -> 1 0.00 1000 \mathbf{O} Laser power P_{laser} (µW)

Tip on site 1

15

Motivations

Domain walls in ultrathin ferromagnets with perpendicular anisotropy are of fundamental interest for spintronic

S. S. P. Parkin et al. Science **320**, 190 (2008)

- understanding the pinning
- determining the chirality of the walls (wall motion)

direct impact onto wall

motion under current

Why using NV microscopy ?

Bloch DW:

† † † † † ⊙ **↓ ↓ ↓ ↓**

Néel DW:

Why using NV microscopy ?

Why using NV microscopy ?

Same sample

Same sample

Same sample

Same sample

Conclusion

New magnetic field imaging technique :

- high resolution
- non invasive
- quantitative

Limited to B < 10mT

Conclusion

New magnetic field imaging technique :

- high resolution
- non invasive
- quantitative

Limited to B < 10mT

next: going to low temperature (4K)

Conclusion

New magnetic field imaging technique :

- high resolution
- non invasive
- quantitative

Limited to B < 10mT

next: going to low temperature (4K)

Thank you

see the poster of J.-P. Tétienne for discussion

excited state

 $m_s = \pm 1$ $m_s = 0$ ground state

excited state

------ metastable state

spin conserving transitions

spin conserving transitions

spin polarization into $m_s = 0$

ODMR

Attaching a nano-diamond

Effect of the tip tapping motion

Fig. 3 – Laser-induced pinning of the domain wall

Fig. S9 – Laser pinning vs. power

Fig. S10 – Temperature vs. Laser power

Fig. S10 – Temperature vs. Laser power

Fig. S11 – DW hopping vs. Laser power

Fit procedure

Fit results

Measuring z and M_s

Measuring z and M_S

Measuring z and M_S

Measuring z and M_s

x [µm]

x [µm]