

Activation éléctrique d'un magnon dans le composé multiferroïque ErMnO₃

L. Chaix^{1,2}

S. de Brion², V. Simonet², E. Ressouche³

 ¹ Institut Laue-Langevin, Grenoble, France
 ² Institut Néel, CNRS et Université Joseph Fourier, Grenoble, France
 ³ Institut de Nanosciences et Cryogénie, SPSMS/MDN, CEA-Grenoble, 38054 Grenoble Cedex 9, France

Etude du couplage magnéto-électrique dynamique dans les composés multiferroïques

2 techniques expérimentales complémentaires : Spectroscopie THz, diffusion inélastique de neutrons

1ere évidence expérimentale

A. Pimenov et al., Nature Phys. 2, 97 (2006)

• Excitation miroire

L. Chaix et al., PRL 110, 157208 (2013)

Electromagnons : excitations magnétiques habillées de charges et excitées par le champ électrique d'une onde électromagnétique

Mécanismes microscopiques à l'origine de ce couplage magnéto-éléctrique dynamique

ErMnO₃: état de l'art

Structure cristallographique 1.

1. Structure cristallographique des h-RMnO₃

Hexagonaux : Sc, In, Lu, Tm, Er, Yb, Y, Ho, Dy Multiferroïques de type I : $T_c < 1000K$ et $T_N < 100K$ Polarisation électrique selon c : \approx 5.6 μ C/cm²

Groupe d'espace : P6₃cm Mn : site 6c R : 2 sites R(2a) et R(4b)

20/11/13

CINIS

ErMnO₃ : état de l'art

Structure cristallographique
 Structure magnétique

1. Structure magnétique : YMnO₃ et ErMnO₃

 $YMnO_3 : Mn^{3+}$

Chrs)

ErMnO₃ : Mn³⁺ + Er³⁺

- 1. Ligne AILES
- 2. Configurations expérimentales
- . Résultats expérimentau
- L. Comparaison avec YMnO₃

1. Mesures THz sur la ligne AILES/SOLEIL

- Transmission : T = I / IO \approx exp (- α d)
- Absorbance : Abs= Ln (T) $\approx \alpha$ d

98 % de polarisation verticale dans la gamme d'énergie < 100 cm⁻¹

- L. Ligne AILE
- 2. Configurations expérimentales
 - . Résultats expérimentaux
- 4. Comparaison avec YMnO

2. Configurations expérimentales

2 échantillons, 3 configurations expérimentales

Orientation relative du champ **e** électrique et **h** magnétique THz par rapport à l'axe **c**

3 configurations expérimentales

Règles de sélection des excitations

- **Résultats expérimentaux** 3.

- Comparaison avec YMnO₃ 4.

4. Comparaison ErMnO₃/YMnO₃

- 1. Ligne AILES
- 2. Configurations expérimentales
- . Résultats expérimentau
- 4. Comparaison avec YMnO

Résumé

Diffusion inélastique
 Simulations d'ondes de spin

1. Diffusion inélastique de neutrons : ErMnO₃ (ToF IN5) T = 1.5K

- Une excitation très intense et peu dispersive vers 60 cm⁻¹
- Une excitation très dispersive

- Excitations de champ cristallin : Er³⁺
- Ondes de spin : Mn³⁺

Diffusion de neutrons Simulations d'ondes de spin

Diffusion inélastique
 Simulations d'ondes de spin

2. Simulations d'ondes de spin : Mn³⁺

Modèle : J₁, J_{z1}, J_{z2}, D et H

20/11/13

r Résumé : magnon électro-actif

r Résumé : magnon électro-actif

Origine de l'électro-activité de EM 🗲 couplage Mn-Er

Electro-activité de EM ?

Hybridation entre un magnon associé à l'ordre magnétique du Mn et une excitation de champ cristallin de l'Er électro-active

• **R. Ballou, J. Debray, J. Balay, A. Hadj-Azzem, P. Lejay** *Institut Néel, CNRS et Université Joseph Fourier, Grenoble , France*

• S. Petit

Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, F-91191 Gif sur Yvette, France

• G. Creff, F. Willaert, J-B. Brubach and P. Roy

SOLEIL / AILES L'Orme des Merisiers, France

• J. Ollivier (IN5)

Institut Laue-Langevin, Grenoble, France

L.-P. Regnault (IN22)

Institut de Nanosciences et Cryogénie, SPSMS/MDN, CEA-Grenoble, 38054 Grenoble Cedex 9, France

• A. Cano

ESRF, Grenoble, France

INTRODUCTION

Multiferroïsme

Coexistence de deux ordres ferroïques: Ordre électrique (Polarisation/champ électrique)

Ordre magnétique (Aimantation/champ magnétique)

Ordre élastique

The renaissance of multiferroics SCIENCE 2006

INTRODUCTION

M

Ν

Multiferroïsme

Coexistence de deux ordres ferroïques:

Ordre électrique (Polarisation/champ électrique) Ordre magnétique (Aimantation/champ magnétique) Ordre élastique

Couplage magnéto-électrique

Contrôle de l'aimantation en appliquant un champ électrique ou de la polarisation en appliquant un champ magnétique. The renaissance of multiferroics SCIENCE 2006

 \square

E

σ

INTRODUCTION

M

Ν

Multiferroïsme

Coexistence de deux ordres ferroïques:

Ordre électrique (Polarisation/champ électrique) Ordre magnétique (Aimantation/champ magnétique) Ordre élastique

Couplage magnéto-électrique

Contrôle de l'aimantation en appliquant un champ électrique ou de la polarisation en appliquant un champ magnétique.

Couplage magnéto-électrique dynamique

The renaissance of multiferroics SCIENCE 2006

Couplage magnéto-électrique dynamique

Electromagnons : magnons ayant un caractère dipolaire éléctrique excité par le champ électrique d'une onde électromagnétique

Mécanismes microscopiques à l'origine de ce couplage magnéto-éléctrique dynamique

ms ErMnO₃: état de l'art

Composés h-RMnO₃
 ErMnO₃ : structure cristallographiq
 ErMnO₃ : structure magnétique

- 1. Composés h-RMnO₃
- Hexagonaux : Sc, In, Lu, Tm, Er, Yb, Y, Ho, Dy Multiferroïques de type I : $T_c < 1000K$ et $T_N < 100K$ Polarisation électrique selon c : $\approx 5.6 \mu$ C/cm²
- Groupe d'espace : *P*6₃*cm*
 - Mn : site 6c
 - R : 2 sites R(2a) et R(4b)
- Transition isostructurale à T_N x(Mn)≠1/3
- Mn³⁺: structure magnétique à 120° dans le plan (a,b)
 + composante ferromagnétique selon c ?
- R³⁺ : structure magnétique F ou AF // ou ⊥ à c
- Couplage Mn-R
- Excitations hybrides : YMnO₃, HoMnO₃

ErMnO₃: état de l'art **C**Nrs

ErMnO₃: structure cristallographique 2.

ErMnO₃ : structure cristallographique 2.

Multiferroïques de type I : T_c = 833K et T_N = 79K

Groupe d'espace : P6₃cm Mn : site 6c Er : 2 sites R(2a) et R(4b)

ErMnO₃ : état de l'art

Composés h-RMnO₃

ErMnO₃: structure cristallographi

3. ErMnO₃ : structure magnétique

2. ErMnO₃ : structure magnétique

- Ordre magnétique associé aux Mn³⁺ : T_{N1} = 79K
 - Vecteur de propagation k = 0
 - Moments magnétiques à 120° dans le plan (a,b)
 - Ordre magnétique associé aux Er³⁺ site 4b : T_{N1} = 79K
 - Polarisé par le champ moléculaire des moments magnétiques des ions Mn³⁺
 - Moments magnétiques le long de l'axe c
 - Ordre magnétique associé aux Er³⁺ site 2a : T_{N2} = 10K
 - Ordre magnétique à plus basse T
 - Induit une réorientation des moments magnétiques des ions Mn³⁺ et Er³⁺ site 4b

D. Meier et al., PRB 86, 184415 (2012)

J. Park et al., Appl. Phys. A 74 802 (2002)

M. Fiebig et al., PRL 88, 027203 (2002)

H. Sugie et al., J. Phys. Soc. Jpn. 71, 1558 (2002)

CINS

- 1. Ligne AILES
- 2. Configurations expérimentales
- . Résultats expérimentau
- . Comparaison avec YMnO₃

1. Mesures THz sur la ligne AILES/SOLEIL

- Transmission : T = I / IO \approx exp (- α d)
- Absorbance : Abs= Ln (T) $\approx \alpha$ d

98 % de polarisation verticale dans la gamme d'énergie < 100 cm⁻¹

- . Ligne AILE
- 2. Configurations expérimentales
 - Résultats expérimentaux
- . Comparaison avec YMnO

2. Configurations expérimentales

2 échantillons, 3 configurations expérimentales

Orientation relative du champ **e** électrique et **h** magnétique THz par rapport à l'axe **c**

Mesures THz

- 1. Ligne AILES
- 2. Configurations expérimentale
- 3. Résultats expérimentaux
- Comparaison avec YMn

CINIS 👔 Mesures THz

- Comparaison avec YMnO₃ 4.

4. Comparaison avec YMnO₃

20/11/13

1. Diffusion inélastique

1. Diffusion inélastique des neutrons : ErMnO₃ (ToF IN5) T = 1.5K

• Transitions de champ cristallin

Ondes de spin : Mn³⁺

• Une excitation très dispersive

vers 60 cm⁻¹

 Signal très intense et peu dispersif à basse énergie

Une excitation très intense et peu dispersive

20/11/13

Diffusion inélastique
 Simulations d'ondes de spin

2. Simulations d'onde de spin : Mn³⁺ (S. Petit)

$$H = \sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j + H \vec{S}_i \cdot \vec{n}_i + D S_i^z S_i^z$$

- 3 interactions d'échange : J₁, J₂₁ et J₂₂
- Transition isostructurale x(Mn) ≠ 1/3 :
 - x > 1/3 : J_{Z1} > J_{Z2}
 - x < 1/3 : J_{Z1} < J_{Z2}
- Anisotropie magnétocristalline
 - Axe facile H
 - Plan facile D

X. Fabrèges et al., PRL 103, 067204 (2009)

CNrs

Diffusion inélastique
 Simulations d'ondes de spin

2. Simulations d'ondes de spin : Mn³⁺

YMnO₃

Origine de l'électro-activité de EM 🗲 couplage Mn-Er

Hybridation : l'éléctro-activité (e//c) de EM → transition de champ cristallin (e//c)

Les symétries autorisent-t-elles des transitions de champ cristallin électro-actives (e//c) ?

Oui mais il est impossible de discerner e//c et h//c

Quelle transition est hybridée ?

Fort couplage entre Mn et Er -> site 4b

- Calculs de champ cristallin pour le site 4b
- Expérimentalement : spliting à la T_N
- Signal amplifié pour e//c

CONCLUSION

Mécanisme d'hybridation

Origine du couplage Mn-Er ?

CINIC

• **R. Ballou, J. Debray, J. Balay, A. Hadj-Azzem, P. Lejay** *Institut Néel, CNRS et Université Joseph Fourier, Grenoble , France*

• S. Petit

Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, F-91191 Gif sur Yvette, France

• G. Creff, F. Willaert, J-B. Brubach and P. Roy

SOLEIL / AILES L'Orme des Merisiers, France

• J. Ollivier (IN5)

Institut Laue-Langevin, Grenoble, France

L.-P. Regnault (IN22)

Institut de Nanosciences et Cryogénie, SPSMS/MDN, CEA-Grenoble, 38054 Grenoble Cedex 9, France

• A. Cano

ESRF, Grenoble, France