

MPQ

niversité

DRIVING THE SPIN EXCITATIONS IN $BiFeO_3$ FROM SPIRAL TO CANTED STATE USING PRESSURE

J. Buhot, C. Toulouse, M.-A. Méasson, M. Cazayous, Y. Gallais, A. Sacuto

Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, France

Collaborations:

Dawei Wang

Electronic Materials Research Laboratory, Xi'an Jiaotong University, Xi'an (CHINA)

L. Bellaiche Physics Department, University of Arkansas, Fayetteville (USA)

R. de Sousa

Department of Physics and Astronomy, University of Victoria, Victoria, B.C., V8W 3P6, Canada

D. Colson

Service de Physique de l'Etat Condensée, DSM/IRAMIS/SPEC, CEA Saclay, F-91191 Gif-sur-Yvette, France

BFO: The most studied multiferroic compound

$Ferroelectric < T_c = 1100K$

Ferroelectric single domain crystal

✓ Very large polarization
P_s~ 100 µC/cm²

Pseudo cubic structure

G type antiferromagnetic $< T_N = 640 K$

Antiferromagnetic single domain crystal

✓ One spin rotation plane (-12-1)
containing P and q : one cycloid

Inelastic light scattering

Inelastic light scattering: Sir C. Raman (1888-1970) Nobel Price 1930

Stokes Process

— — — — — — — Virtual or real state

Phonons Magnons Electrons

Inelastic light scattering

✓ Up to 20 Gpa

- ✓ Load with argon gas or helium gas (good hydrostaticity)
- ✓ Diamond anvil cell with membrane: in-situ change of pressure
- ✓ Synthetic diamond with Boelher design (large numerical aperture 85°) and low impurities (low Raman signal from diamond)

excitations under pressure (down to 5 cm⁻¹~0.6 meV)

3/11

At low temperature (down to 3K)

For the first time, possibility to study low energy excitations under pressure (down to 5 cm⁻¹~0.6 meV)

Phonon modes under pressure in BiFeO₃

Guennou et al. PRB 2011

Phonon modes under pressure in BiFeO₃

Phonon modes under pressure in BiFeO₃

Phonon modes under pressure in BiFeO₃

Phonon modes under pressure in BiFeO₃

New phonon modes are observed

Phonon modes under pressure in BiFeO₃

Narrow peaks in Phase II \rightarrow tilt of oxygen octahedra

Phonon modes under pressure in BiFeO₃

GDR MICO 2013

Jonathan Buhot

Magnon modes at ambient pressure in BiFeO₃: a fingerprint of the cycloid

GDR MICO 2013

Jonathan Buhot

Magnon modes at ambient pressure in BiFeO₃: a fingerprint of the cycloid

 ✓ Folding of the magnons branches at the Brillouin zone center

GDR MICO 2013

Jonathan Buhot

Magnon modes under pressure in BiFeO₃

Orthorhombic (P_{nma}) structure

Phases II, III, IV

Rhombohedral (R_{3c}) structure

Magnon modes under pressure in BiFeO₃

✓ In R3c phase, shifting of the magnetic excitations

✓ Above 3.5 GPa, after the 1st structural transition, only two magnetic excitations remain.

✓ Vanishing of the magnetic cycloid at the first structural transition

 \rightarrow AF structure (with certainly spin canting)

Theoretical calculations of the structural phases

Derive from: Rahmedov, D., Wang D., Íñiguez, J. & Bellaiche L., Phys. Rev. Lett. 129, 037207 (2012)

Energies of each phase calculated with an effective Hamiltonian scheme.
(Ferroelectricity, oxygen octahedra tilting, strain, magnetic moment and their mutual couplings)

- At 3.5GPa, R3c \rightarrow Complex1
- At 8GPa, Complex1 → Complex2 (Complex oxygen octahedra tiltings)
- At 15GPa, Complex2 \rightarrow Pnma

Theoretical calculations of the magnetic structure

Derive from: Rahmedov, D., Wang D., Íñiguez, J. & Bellaiche L., Phys. Rev. Lett. 129, 037207 (2012)

Spin-current model describing the electric and magnetic dipole interactions:

$$E_{\text{E-M}} = \sum_{i,j} C \left(\mathbf{u}_i \times \mathbf{e}_{ij} \right) \cdot \left(\mathbf{m}_i \times \mathbf{m}_j \right)$$

i runs over all the Fe sites j runs over the second-nearest neighbours (12 sites) of the site i C is the coupling coefficient u_i and m_i represent the electric and magnetic dipoles e_{ij} is a vector along the direction connecting site i and j

Cycloid vanishing is expected at the first structural transition

• AF structure with spin canted is expected in Complex 1 and 2

• Cycloid is forbidden in Pnma phase (non-polar phase)

• At the first structural transition, the average electric dipole changes from [111] to approximately [012] for Complex1 and decrease in magnitude.

Magnon modes under pressure in BiFeO₃

✓ Shift of the magnetic excitations vs electric field : can be interpreted using the Landau freeenergy model.

R. De Sousa and M. Cazayous, Phys. Rev. Lett. (2013)

Ongoing analysis

Comparison with thin films

Comparison with thin films

Comparison with thin films

Comparison with thin films

Comparison with thin films

D. Sando et al., Nat. Mater. 12, 641–646,(2013)

 ✓ Without the 1st structural transition, theoretical calculations expect the vanishing of the cycloid at about 6GPa. 10/12

Conclusion

✓ Under pressure, **new phonon modes** are observed **at low energy** and **four structural phase** transitions occur **from Rhombohedral** (R_{3c}) to Orthorhombic (P_{nma}).

✓ At the first structural transition, the magnetic cycloid vanishes and an AF order with certainly canted spin takes place.

 The hydrostatic pressure allows a tuning of the spin state whereas for thin films, we have only access to discrete misfit strain accordingly to the substrate.
Magnetoelectric mechanism: ongoing analysis