Direct Evidence of Fe^{2+}/Fe^{3+} Charge Ordering in Ferrimagnetic $Fe_{1.35}Ti_{0.65}O_{3-\delta}$ Thin Films

Laura Bocher^{1,} A. Gloter¹, K. March¹, E. Popova², M. Nolan³, B. Warot-Fonrose⁴, N. Keller², Y. Dumont² and O. Stéphan¹

- 1. Laboratoire de Physique des Solides, STEM Group, Université Paris-Sud, Orsay France
- 2. Groupe d'Etudes de la Matière Condensée, GEMaC, Versailles France
- 3. Tyndall Institute, Cork University College, Cork Ireland
- 4. Centre d'Elaborations et d'Etudes Structurales, CEMES, Toulouse France

Functional Complex Metal Oxides

→ Strong interplay between lattice, charge, orbitals and spin degrees of freedom A real driving force controlling electronic and magnetic interactions

 \rightarrow Mixed valence-states of 3d elements and oxygen content variation

Magnetic semiconductor $Fe_{2-x}Ti_{x}O_{3-\delta}$ (FTO)

A complex structure-property relationship

E. Popova et al. J. Appl. Phys., **103** (2008) 093909 Hamie et al. Appl. Phys. Lett. **98** (2011) 232501

L. Bocher, LPS Orsay – GDR MICO 19th Nov. 2013

• Presence of the (0, 0, 0, 2n+1) Bragg reflexions characteristic of the R-3 symmetry \rightarrow at the macroscopic scale : cation ordering along the [0001] zone axis / the *c*-axis

What's going on down to the atomic scale?

E. Popova et al. J. Appl. Phys., **103** (2008) 093909 Hamie et al. J. Appl. Phys. **108** (2010) 093710 Hamie et al. Appl. Phys. Lett. **98** (2011) 232501

Aberration-corrected NION UltraSTEM 200

→ Resolving the atomic and electronic structures of low dimensional systems

Aberration-corrected NION UltraSTEM 200

→ Resolving the atomic and electronic structures of low dimensional systems

@ 100 keV * probe size : 0.8 Å

* energy resolution : 350 meV (core-loss region)

NION 40 – 200 keV CFEG
C3/C5 aberration STEM
Enfina spectrometer fitted with very high

sensitivity fast CCD camera

→ Orsay's optic coupling system[®] (M. Tencé)

Nion UltraSTEM200, LPS, Orsay.

Spectrum-Imaging (SPIM) mode – 3D data cube*

Multi-dimensional spectro-microscopy technique

ightarrow spatially-resolved information down to the atomic scale

* C. Jeanguillaume & C. Colliex – Ultram. 28 (1989) 252

Advanced STEM/EELS on Functional Oxides

Beyond « looking at » atoms

\rightarrow probing local bonding environment & electronic structure by mapping the:

coordination / hybridization geometries

¹ Turner S. et al. Chem. Mat. **24** (2012) 1904

• structural distortions

³ Torres-Pardo A. et al. PRB, **84** (2011) 220102

545 Energy Loss (eV)

² Mundy J.A. et al. APL, **101** (2012) 042907

⁴ Tan H. T. et al. PRL **107** (2011) 107602

Imaging the cation modulation

- Clear visualization of the cation dumbbells
- Contrast variation along the *c*-axis
- Modulation confirmed by HAADF image simulation
- \rightarrow Cation arrangement at the atomic scale

Mapping the cation modulation

• R-3 FTO phase consists of rich Fe columns alternating with mixed Fe/Ti ones

 \rightarrow Evidence of a cation ordering at the atomic scale

Toward higher energy resolution...

Multiplet features characteristics of Fe²⁺ or Fe³⁺ contributions

L. Bocher, LPS Orsay – GDR MICO 19th Nov. 2013

L. Bocher, et al. Phys. Rev. Lett. 111, 167202 (2013)

Real-space valence mapping

 \rightarrow Fe²⁺ distribution strongly modulated on the Fe-rich site

- Fe-rich site: $Fe^{2+}/Fe^{3+} \approx 3/1$
- mixed Fe/Ti site: $Fe^{2+}/Fe^{3+} \approx 1$ and solely Ti^{4+}

Direct experimental evidence of Fe^{2+/}Fe³⁺ charge ordering

Back to the structural model

Ab initio theoretical calculations: DFT + U formalism VASP code using PAW potentials

Fe_{1.5}Ti_{0.5}O₃ model system resulting from DFT calculations \rightarrow R-3 ordered structure rich-Fe planes \rightarrow mixed Fe²⁺/Fe³⁺ mixed Fe/Ti planes \rightarrow mixed Fe³⁺ & Ti⁴⁺ but experimentally: \bigcirc Fe²⁺ • rich-Fe site: Fe²⁺-Fe³⁺ Fe • mixed Fe/Ti site: Fe²⁺-Fe³⁺-Ti⁴⁺ Ti Ti

Introducing oxygen vacancies

... electrons transferred to \rightarrow either Ti reducing Ti⁴⁺ to Ti³⁺ \rightarrow or Fe reducing Fe³⁺ to Fe²⁺

charge and cation orderings
 ... 2Fe³⁺ - 6Fe²⁺ / 2Fe³⁺ - 2Fe²⁺ - 4Ti⁴⁺...

Conclusions

- evidence of solely mixed Fe²⁺/Fe³⁺ valence states
- real-space technique revealing Fe²⁺ localized on Fe-rich sites
- key-role of oxygen vacancies on the charge modulation

