Effect of pressure and chemical substitution on the structural, magnetic and superconducting properties of iron based arsenides and chalcogenides

<u>P. Toulemonde</u>, S. Karlsson, D. Santos-Cottin, D. Freitas, M. Núñez Regueiro,
P. Strobel, A. Sulpice, J. Marcus, S. Pairis, F. Lévy-Bertrand Institut Néel, Grenoble
C. Marcenat

- G. Garbarino
- V. Nassif, Th. Hansen, J.A. Rodríguez Velamazán

ESRF, Grenoble ILL, Grenoble

F. Morales

IIM, Universidad Nacional Autónoma de México, México

Outline

- Introduction: some key parameters of iron based superconductors

Some words about our previous work:

- Isovalent substitution of As by P in the SmFeAsO compound & comparison with the high pressure study Garbarino et al. Phys. Rev. B 84, 024510 (2011)
- Isovalent substitution of As by Sb in the LaFeAsO compound

Karlsson et al. Phys. Rev. B 84, 104523 (2011)

In more details in this talk:

- Isovalent substitution of Se by S (or Te) in the TI_{1-y}Fe_{2-z}Se₂ compound Toulemonde et al. JPCM (2013)

- Conclusion

Introduction: new iron-based superconductors

LnFeAsO **"1111"** T_c max = **55 K**

 $(AE,A)Fe_2As_2$ "122" $T_c max = 38 K$

 $Fe_{1+\delta}(Se_{1-x}Te_x)$ "11" $T_c = 8K \text{ to } 15K$

Fe-As: 2.435Å Fe-Fe: 2.85Å & 8.74Å **α,β**(As-Fe-As): 111.6° & 108.4° Fe-As: 2.40Å Fe-Fe: 2.80Å & 6.51Å As-Fe-As: 111.1° & 108.7°

α

Fe-Se: 2.367 Å Fe-Fe: 2.66 Å & 5.52 Å Se-Fe-Se: 111.6° & 105.4°

Introduction: from AntiFerroMagnetism to SuperConductivity

The non superconducting parent compound: Long range AFM order (Spin Density Wave) below T_{Néel}

Superconductivity (SC) appears when AFM order is destabilized by chemical doping or mechanical pressure

Introduction: phase diagram T vs composition **or** T vs pressure

1111 $(O_{1-x}F_x)$

122/HP

Superconductivity (SC) appears when AFM order is destabilized by chemical doping or mechanical pressure

Our previous study: isovalent substitution of As by P (chemical pressure) or Sb in LnFeAsO (Ln=Sm,La)? → Garbarino et al. Phys. Rev. B 84, 024510 (2011). & Karlsson et al. Phys. Rev. B 84, 104523 (2011).

Isovalent substitution of As by P in SmFeAsO

SmFe(As_{1-x}P_x)O: mechanical pressure VS chemical pressure

Toulemonde et al, unpublished.

SmFe(As_{1-x}P_x)O series: correlation Tc ⇔crystallo structure.

P substitution in SmFeAsO induces superconductivity with a T_c variation different from the one obtained under pressure In strong contrast with BaFe₂(As_{1-x}P_x)₂ system !!!

 \rightarrow Explanation: electronic structure changes (nesting, N(E_F)) are different

Toulemonde et al, unpublished.

BaFe₂(As_{1-x}P_x)₂ series: literature

Ba-122 system: mechanical P ~ chemical pressure (isovalent subst. P/As)

Isovalent substitution of As by Sb in LaFeAsO

LaFe(As_{1-x}Sb_x)O: M(T), Cp(T) and R(T)

S. Carlsson et al. Phys. Rev. B84, 104523, 2011.

LaFe(As_{1-x}Sb_x)O: phase diagram

→Successful replacement of As by
Sb in LaFeAsO up to 40%
→Physical measurements show a

decrease of T_{Néel} but no superconductivity (in the contrary of P substitution)

→ NPD shows a slight increase of m(Fe) with Sb content in the low T AFM structure as expected by DFT calculations

→Our analysis suggest that the crucial structural parameter controlling the magnetic interaction and the occurrence of superconductivity in 1111 arsenides is the Fe-As bond length

S. Carlsson et al. Phys. Rev. B84, 104523, 2011.

Part 1:

Isovalent substitution of Se by S in TIFe_{2-z}Se₂

sensitivity of superconductivity to pressure

In the $Fe_{1+\delta}$ Se chalcogenide ?

G. Garbarino et al. EPL 86 (2009)

Introduction:

Okabe et al. Phys. Rev. B 81 (2010)

→ Superconductivity is strongly enhanced by mechanical pressure: From T_c= 8K to ~35K under 6-12GPa

Could TI_{1-y}Fe_{2-z}Se₂ be SC by adequate substitution or pressure? In this talk: Se substitution by Sulfur Pressure effect on TIFe_{1.6}Se₂

TIFe_{2-z}Se₂: a parent phase to induce superconductivity?

TIFe_{2-z}(Se_{1-x}S_x)₂: synthesis and x-ray diffraction

 <u>Synthesis</u>: TI pieces + Fe + Se/S powders reacted at 700°C in sealed quartz tube and cooled down to 280°C at 5°C/h

- → Full solid solution 0 < x(S) < 100% in $TI_{0.8}Fe_{1.5}(Se_{1-x}S_x)_2$
- \rightarrow Nearly single phase

Toulemonde et al, accepted in JPCM (2013).

TI_{0.8}Fe_{1.5}Se₂

TIFe_{2-z}(Se_{1-x}S_x)₂: crystallographic study by XRD & ED/TEM

- Observation of **supercell peaks** in <u>XRD</u> patterns corresponding to ordered vacancies in iron plane:

Observed supercells by XRD and ED (by TEM)

Toulemonde et al, accepted in JPCM (2013).

TIFe_{2-z}(Se_{1-x}S_x)₂: crystallographic study by XRD & ED/TEM

- Observation of **supercell peaks** in <u>XRD</u> patterns corresponding to ordered vacancies in iron plane:

Toulemonde et al, accepted in JPCM (2013).

TIFe_{2-z}(Se_{1-x}S_x)₂: lattice parameters & bond length versus x(S)

TIFe_{2-z}(Se_{1-x}S_x)₂: Fe-(Se/S) height & (Se/S)-Fe-(Se/S) angle versus x(S)

But No superconductivity!...

Toulemonde et al, accepted in JPCM (2013).

TIFe_{2-z}(Se_{1-x}S_x)₂: low T and high T M(T) and R(T)

Toulemonde et al, accepted in JPCM (2013).

TIFe_{2-z}(Se_{1-x}S_x)₂: low T and high T M(T) and R(T)

→ T_{néel} decreases with S content
→ but No superconductivity induced by S substitution

Toulemonde et al, accepted in JPCM (2013).

TIFe_{2-z}(Se_{1-x}S_x)₂: conclusion

Toulemonde et al, accepted in JPCM (2013).

Conclusion

- TIFe_{2-y}(Se_{1-x}S_x)₂
- direct linear relationship between T_{Néel} & Fe-Se/S height (or Fe-Se/S bond length)
- no superconductivity observed over the full substitution range!
- which ingredient is missing? Higher $N(E_F)$? No phase separation (TI content fixed)?

SmFeAs(O_{0.81}F_{0.19}) under HP

- 1^{st} study showing the direct correlation between the regularity of the tetrahedron FeAs₄ & T_c

• SmFe(As_{1-x}P_x)O

- ISOelectronic substitution but Superconductivity (!) like in BaFe₂(As_{1-x}P_x)₂
- Chemical pressure (As/P) effect ≠ mechanical pressure in 1111 system
- Evolution of the electronic structure with P substitution? Need theoretical investigation...

• SmFe(As_{1-x}Sb_x)O

- Sb substitution = "negative" chemical pressure
- phase diagram: T(SDW) 🐿 with Sb content
- superconductivity in HP-HT synthesized samples (probably because of oxygen vacancies)!