

G. SCHEERER, W. KNAFO, G. BALLON, F. DUC, J. BARATA, M. NARDONE, A. ZITOUNI, J. BEARD, J. BILLETTE, M. SULEIMAN, P. FRINGS, L. DRIGO, A. AUDOUARD,

Laboratoire National des Champs Magnétiques Intenses - Toulouse

D. AOKI, G. KNEBEL, A. POURRET, J. FLOUQUET, Institut Nanosciences et Cryogénie, SPSMS, CEA-Grenoble

Roscoff, January 2013

REVIEWS OF MODERN PHYSICS, VOLUME 83, OCTOBER-DECEMBER 2011

Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu_2Si_2

J. A. Mydosh*

Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, NL-2300 RA Leiden, The Netherlands

P. M. Oppeneer[†]

Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S-75120 Uppsala, Sweden

(published 16 November 2011)

This Colloquium reviews the 25 year quest to understand the continuous (second-order), mean-field-like phase transition occurring at 17.5 K in URu₂Si₂. About ten years ago, the term "hidden order" (HO) was coined and has since been utilized to describe the unknown ordered state, whose origin cannot be disclosed by conventional solid-state probes, such as x rays, neutrons, or muons. The HO is able to support superconductivity at lower temperatures ($T_c \approx 1.5$ K), and when magnetism is developed with increasing pressure both the HO and the superconductivity are destroyed. Other ways of probing the HO are via Rh doping and large magnetic fields. During the last few years a variety of advanced techniques have been tested to probe the HO state and these attempts will be summarized. A digest of recent theoretical developments is also included. It is the objective of this Colloquium to shed additional light on the HO state and its associated phases in other materials.

DOI: 10.1103/RevModPhys.83.1301

PACS numbers: 71.27.+a, 74.70.Tx, 75.30.Mb

Outlook

- High-Magnetic Field Properties: H || c
- (*H*,*T*)-phase diagram (**H** || **c**) of URu₂Si₂
- Angle dependence of the magnetoresistivity
- High-field quantum oscillations:
 - **H** || **a**, up to 80 T
 - **H** || **c**, FS modification inside the "hidden-order"

High-Magnetic Field Properties (**H** || **c**)

 H_1 , H_2 , and H_3 : magnetic transitions $H_{o,max}^{LT}$ = low-temperature crossover

 H_0 = destruction of the "hidden-order" phase

 $H_{\rho,max}$ = high-temperature crossover

Sugiyama et al., J. Phys. Soc. Jpn. (1990) Sugiyama et al., J. Phys. Soc. Jpn. (1999)

See also:

Jaime, et al., Phys. Rev. Lett. (2002) Kim et al., Phys. Rev. Lett. (2003) Kim et al., Phys. Rev. Lett. (2004) Oh et al., Phys. Rev. Lett. (2007) Jo et al., Phys. Rev. Lett. (2007) Levallois et al., EPL (2009)

High-Magnetic Field Properties

 T_{PPM} = temperature scale of the polarized paramagnetic regime

 $T_{x,max}$ = low-field crossover scale controlled by intersite electronic correlations

See also:

Sugiyama et al., J. Phys. Soc. Jpn. (1990) Sugiyama et al., J. Phys. Soc. Jpn. (1999)

(H,T)-Phase Diagram

(H,T)-Phase Diagram

> Inside HO: magnetoresistivity governed by an orbital contribution

(H,T)-Phase Diagram

> Inside HO: magnetoresistivity governed by an orbital contribution

➤ Anomaly at 23 T?

See also:

[Shishido et al., Phys. Rev. Let. (2009)]

Angular dependence of the magnetoresistivity

See also: Sugiyama et al., J. Phys. Soc. Jpn. (1990) Jo et al., Phys. Rev. Lett. (2007)

MC

LNCMI

 $H_1, H_2, H_3, H_{max}^{LT}$ follow a

 $1 / \cos \theta$ law !

See also: Sugiyama et al., J. Phys. Soc. Jpn. (1990) Jo et al., Phys. Rev. Lett. (2007)

CINIS

Angular dependence of the magnetoresistivity

Η,

 $H_{\rho,max}^{LT}$

URu₂Si₂ sample #2

T=1.6 K

60

 $H \parallel c \ \rightarrow \ H \parallel a$

I)

H⊥U,I

 $\mathbf{H} \perp \mathbf{U}, \mathbf{I}$

Angular dependence of the magnetoresistivity

60

II) $H \parallel c \rightarrow H \parallel a$

60

60

 $\text{III}) \quad H \parallel a \ \rightarrow \ H \parallel a$

 $transverse \rightarrow \ longitudinal$

 $\text{III}) \quad H \parallel a \ \rightarrow \ H \parallel a$

 $transverse \rightarrow \ longitudinal$

Angular dependence of the magnetoresistivity

[Aoki et al., J. Phy. Soc. Jpn. (2012)]

Quantum Oscillations: H || a

Quantum Oscillations: H || a

Quantum Oscillations: H || a

Quantum Oscillations: H || a

Quantum Oscillations: H || a

Quantum Oscillations: H || a

Quantum Oscillations: H || c

"hidden order" : 0 – 35 T

Quantum Oscillations: H || c

"hidden order" : 0 – 35 T

Quantum Oscillations: H || c

Fermi surface modification inside the "hidden order"

NIC

LNCM

Quantum Oscillations: H || c

CINIS

(c)

(d)

40

Conclusion

- \succ (*H*,*T*)-phase diagram (**H** || **c**) of URu₂Si₂
- > Angle dependence of ρ_{xx} : transition fields follow 1/cos(θ)-law,

observation of H_{kink} in magnetoresistivity

- High-field quantum oscillations:
 - **H** || **a**: new light mass frequency above α
 - H || c: Fermi surface modifications inside the "hidden-order"

Thank you!

Acknowledgements: L. Bendichou, P. Delescluse, T. Domps, J-M. Lagarrigue, J.-P. Nicolin, T. Schiavo, F. Bourdarot, H. Harima, and J. Levallois. This work was supported by the French ANR DELICE, by Euromagnet II via the EU under Contract No. RII3-CT-2004-506239.

Scheerer et al., Phys. Rev. B 85, 094402 (2012)

Scheerer et al., J. Phys. Soc. Jpn. 81, SB005 (2012).

(H,T) Phase Diagram: Conclusions

High-temperature scales $T_{\chi,max}$ and $T_{\rho,max}$ controled by same phenomenon:

Onset of antiferromagnetic correlations

- Lead to the critical area (H₁, H₂, and H₃)
- Precursor of the "hidden-order" phase.

