

Sylvain RAVY

Ligne CRISTAL, Synchrotron SOLEIL Saint Aubin, 91192 Gif-sur-Yvette, France

Sources de labo

II-EXEMPLES

« X-RAY SCIENCE » ÉVOLUE TRÈS RAPIDEMENT DEPUIS 15 ANS

1-Synchrotrons de 3^e génération (1994-ESRF, ALS, SpRing8, SOLEIL, Diamond...)

- Utilisation de faisceaux cohérents
- Utilisations d'impulsions courtes (100 ps)
- + développements (low-alpha 10 ps ; « slicing » 100 fs)

2-Laser à électrons libres (XFEL) (FLASH, 2009-LCLS, SACLA, FERMI, EuXFEL, SwissFEL...)

- Faisceaux intrinsèquement cohérentes et \leq 30 fs

3-Vers les Ultimate Storage Rings (USR) (2014-MAXIV, NSLS2, SIRIUS, PEP...)

ÉMITTANCE, COHÉRENCE ...

Source de taille σ , d'angle de divergence σ' , largeur spectrale $\Delta\lambda$, vue à une distance D **Emittance** : $\varepsilon = \sigma \sigma' (\leq \frac{\lambda}{4\pi} \equiv \varepsilon_D$ limite de diffraction 10 pm.rad à 10 keV)

Cohérence

Fonction de corrélation mutuelle du champ U(r,t) : $\Gamma(r_1, r_2, \tau) = \langle U(r_1, t)U^*(r_2, t+\tau) \rangle_t$ $1/|\mathbf{r} - \mathbf{r}|$

Source incohérente :

$$\Gamma(\mathbf{r}_{1} - \mathbf{r}_{2}, \tau) \sim e^{-i(\mathbf{k}_{i} \cdot (\mathbf{r}_{2} - \mathbf{r}_{1}) - \omega \tau)} e^{-\frac{1}{2} \left(\frac{\mathbf{r}_{2} - \mathbf{r}_{1}}{\xi_{t}^{G}}\right)} e^{-\tau/\tau}$$

Longueurs de cohérence :

Iongitudinale
$$\xi_l = c\tau_l = \frac{\lambda^2}{\Delta\lambda}$$
 transverse $\xi_t = \frac{\lambda D}{2\pi\sigma}$ Degré de cohérence $\zeta = \frac{\varepsilon_D}{\varepsilon_{\chi}}$

Flux spectrique (ph/s/0.1%bw) Emittance V \times Emittance H

- Focalisation (qqs 10 nm...) : imagerie, nano-cristaux..
- Faisceau parallèle (SAXS, haute résolution angulaire)

Cohérence
$$F_{coh} \propto B\lambda^2 \frac{\Delta\lambda}{\lambda}$$

BRILLANCES ACTUELLES

Brillance moyenne

Le RS : produit par des électrons relativistes

LA 3^E GÉNÉRATION : LES ONDULEURS

Éléments d'insertion magnétiques

FONCTIONNEMENT DE L'ONDULEUR - I

Onduleur de période λ_u (20 mm); $k_u = 2\pi/\lambda_u$

Dans l'onduleur, les électrons ont une vitesse moyenne \overline{v}

$$\overline{v} = \left(1 - \frac{1}{2\gamma^2}(1 + K^2/2)\right)c = \overline{\beta}c$$

e⁻ relativistes !

Antenne : charge qui oscille N fois avec une fréquence 📨

Dans le repère de l'é contraction des longueurs

période
$$\lambda' = \lambda_u / \gamma$$

Rayonnement d'antenne $f' = \gamma \, \overline{v} / \lambda_u$

FONCTIONNEMENT DE L'ONDULEUR - II

Dans le repère de l'électron : $f' = \gamma \, \overline{\nu} / \lambda_u$

Dans le repère du laboratoire Effet Döppler $f = 2\gamma f' \text{ (pour } \theta \ll 1 \text{)}$

$$\begin{bmatrix} \mathsf{cm} \end{bmatrix} \overleftarrow{\lambda} \neq \overleftarrow{\lambda_{u}} \\ [A] \overleftarrow{\lambda} \neq \overleftarrow{2\gamma^{2}} \left(1 + \left(\frac{K^{2}}{2} \right) + \gamma^{2} \theta^{2} \right) \end{bmatrix}$$

FONCTIONNEMENT DE L'ONDULEUR - III

Un electron dans un onduleur : source ponctuelle de rayons X

- Parfaitement cohérente
 - Transversalement (limite de diffraction)
 - Longitudinalement (durée ~ $N\frac{\lambda}{c}$ (= 280 as))
- Flux monochromatique... 10³ ph/s

Dans un anneau, électrons groupés en paquets de n ~10¹⁰ (bunches)

- Flux monochromatique 10¹³ ph/s
- Durée d'impulsion courte 100 ps (pas ultra-courte)
- Emittance faible (mais loin de la limite de diffraction)
- Source incohérente... (rayonnement spontané)

LES ÉLECTRONS DOIVENT ÉMETTRE EN PHASE !

Deux possibilités :

Difficile pour les rayons X ! Possible pour les infra-rouge : CSR Utilisation de mode « low-alpha » Taille de paquets ~ 10 ps (3 mm)

• Laser à électron libres : X-ray Free Electron Laser ! (4G)

LES LASERS À ÉLECTRONS LIBRES

Dans le domaines des UV/RX, basé sur l'effet SASE Self Amplified Stimulated Emission

Les électrons du paquet interagissent avec le rayonnement émis par les électrons les précédant

50 % des électrons gagnent E

- Regroupement en micro-paquets
- Auto-amplification du rayonnement (n²)
- Peu d'électron... impulsion ultra-courtes (fs)
- Amorçage sur du bruit

- Onduleur très long (> 100 m)
- Accélérateurs linéaires (peu stables)

LCLS : PREMIER LEL-X (XFEL)

Première observation du SASE X-durs

- LCLS (Stanford, 2009) 0,15 nm (Emma, Nature Photonics 2010)
- Accélérateur de 14 GeV, onduleur de 130 m

Durée d'impulsion 40-80 fs (10 fs) 10^{12} ph/pulse @120 Hz, Flux = 2 10^{12} ph/s B = 10^{23} UB Por

6 expériences : s Physique atomique, plasma Pompe-sonde, diffraction X-dur/X-mou

LCLS : EXPERIENCES À « UN TIR » BIOLOGIE STRUCTURALE

Chapman et al. Nature 470 73 (2011) CXI : Coherent X-ray Imaging Structure d'une protéine membranaire « One shot » 30 Hz, 70 fs, 1,8 keV

Semble impossible pour Une molécule unique...

LCLS : EXPÉRIENCES À « UN TIR »

AMO : Physique atomique

- Multi-ionisation femtoseconde (Young, Nature 2010, Neon)
- Impulsions ~ 1 keV 40 fs
- Evidence d'atome « creux »
- Transparence...

LCLS : EXPÉRIENCES À « UN TIR »

PRL 108, 267403 (2012)

PHYSICAL REVIEW LETTERS

week ending 29 JUNE 2012

Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers Using Resonant X-Ray Holography

Tianhan Wang,^{1,2,*} Diling Zhu,^{3,4} Benny Wu,^{2,4} Catherine Graves,^{2,4} Stefan Schaffert,⁵ Torbjörn Rander,⁵ Leonard Müller,⁶ Boris Vodungbo,⁷ Cédric Baumier,^{8,9} David P. Bernstein,^{2,4} Björn Bräuer,² Vincent Cros,¹⁰ Sanne de Jong,³ Renaud Delaunay,⁸ Andreas Fognini,¹¹ Roopali Kukreja,^{1,2} Sooheyong Lee,³ Víctor López-Flores,¹² Jyoti Mohanty,⁵ Bastian Pfau,^{13,5} Horia Popescu,⁹ Maurizio Sacchi,^{9,14} Anna B. Sardinha,^{7,15} Fausto Sirotti,⁹ Philippe Zeitoun,⁷ Marc Messerschmidt,³ Joshua J. Turner,³ William F. Schlotter,³ Olav Hellwig,¹⁶ Richard Mattana,¹⁰ Nicolas Jaouen,⁹ Franck Fortuna,¹⁷ Yves Acremann,¹¹ Christian Gutt,⁶ Hermann A. Dürr,² Eric Beaurepaire,¹² Christine Boeglin,¹² Stefan Eisebitt,^{13,5} Gerhard Grübel,⁶ Jan Lüning,^{8,9} Joachim Stöhr,^{2,3} and Andreas O. Scherz^{2,†}

SXR : Magnétisme/cohérence

- Hologramme de domaines ferro
- 80 fs, Co L₃ (1.59 nm 778.1 eV)
- Pas de dommages en 80 fs entre
 5 et 25 mJ/cm²

II-EXEMPLES

Principe des expériences pompe-sonde

+ 52µA

Slicing mode: 100 fs FWHM (2013) \circ

•

Time-resolved diffraction setup installed on CRISTAL

LE BISMUTH ET LES PHONONS COHÉRENTS

- Structure de type A_7 (rhombo., 2 at/maille)

- Dimerisation due à une distortion « à la Peierls »

 Excitation cohérente du mode optique A_{1g} (2,5 THz) après impulsion IR

D. Boschetto et al. PRL 2008

BISMUTH: DIFFRACTION FEMTO

Phonon cohérent optique : intensité diffractée oscillatoire

BISMUTH : PHONONS COHÉRENTS ACOUSTIQUES

- Contraintes se relâchent à partir de la surface
- Déformations se propagent
- Déplacement du pic de Bragg ($2d \sin \theta = \lambda$)
 - Couche minces de 200 nm Bismuth (CRISTAL 2012 mode low-alpha : 10 ps)

M. Cammarata, M. Servol, C. Laulhé

- Vitesse du son dans le film : 1931 m/s (volume 1972 m/s)
- Pas de modèles théoriques pour $\boldsymbol{\tau}$

- Mesure de constantes élastiques dans des nano-objets

Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. *Phys. Rev. B* 34, 4129–4138 (1986).

BISMUTH : PAS DE TRANSITION

Fusion athermique de l'ODC de TiSe₂ Johnson PRL 2011

Amplitudon cohérent de l'ODC de 1T-TaS₂ Demsar PRL 2002

TRANSITION PHOTO-INDUITE : TRANSITION DE SPIN DANS [TPA FE(III) TCC]PF6 ANR ULTIMATE (E. COLLET, E. FREYSZ, M.-L. BOILOT, J.-F. LETARD, SR)

De la transformation moléculaire à la transition de phase du solide

TRANSITION DE SPIN DANS [TPA FE(III) TCC]PF6

• Time-resolved structure determination at 180 K (Lorenc, PRL09):

Effets photoinduits dans [TPA Fe(III) TPP] PF₆:
1) Transformation moléculaires HS/BS(fs-ps)
2) Propagation de la déformation (100 ns)
3) Diffusion de la chaleur dans le cristal (µs)
4) Relaxation (ms)

Hervé Cailleau et al., Acta Cryst A 66, 189 (2010); M. Lorenc et al., PRL 103 028301 (2009)

TRANSITION DE SPIN : AUX TEMPS LONGS (CRISTAL)

Etude de la tache (200)

Changements de la μ -structure

C. Laulhé et al., Acta Physica Pol. 2011

TRANSITION DE SPIN : AUX TEMPS ULTRA COURTS (XPP@LCLS)

ÉRIC COLLET, MACIEJ LORENC, CLAIRE LAULHÉ, ROMAN BERTONI, SR, MARCO CAMMARATA, (JUIN 2012) HENRIK LEMKE, MATHIEU CHOLLET

TRANSITION DE SPIN : XANES EN TEMPS RÉSOLU

LCLS résolution de ~ 50 fs
Transformation LS/HS : 140 fs

- Mesure d'un spectre XANES trop long
- Choisir l'énergie à étudier (transition en T)

- Ré-analyse de la réflectivité
- Changement de fréquence à ~1,5 ps
- De 2 THz à 1 THz... Relaxation structurale ?

VO2: TRANSITION PHOTO-INDUITE

- Structure Rutile : chaînes de vanadium
- Transition métal-isolant à 340 K
- Changement structural (Rhombo-Mono)
- Dimérisation + inclinaison des paires V-V
- Matériau inhomogène près de la transition

Singulet magnétique, Peierls vs Mott ? Voir récemment : Biermann, PRL 2005

VO2: TRANSITION PHOTO-INDUITE

- Transformation MI ultrarapide après impulsion IR (Cavalleri PRL 2001-2005)
- Transition se passe en en trois temps :
 - Etirement des V-V (300 fs)
 - Rotation des V-V (15 ps)
 - Déformation de la maille (R-M)

À préciser par diffraction RX ?

VERS DES PHASES CACHÉES...

mature materials

PUBLISHED ONLINE: 16 JANUARY 2011 | DOI: 10.1038/NMAT292

ETTERS

Transient photoinduced 'hidden' phase in a manganite

Hirohiko Ichikawa¹, Shunsuke Nozawa^{1,2}, Tokushi Sato^{1,2,3}, Ayana Tomita^{1,3}, Kouhei Ichiyanagi^{1†}, Matthieu Chollet^{3†}, Laurent Guerin^{1†}, Nicky Dean⁴, Andrea Cavalleri^{4,5}, Shin-ichi Adachi^{1,2}, Taka-hisa Arima⁶, Hiroshi Sawa^{2†}, Yasushi Ogimoto⁷, Masao Nakamura^{7†}, Ryo Tamaki⁷, Kenjiro Miyano⁷ and Shin-ya Koshihara^{1,3}* Nouvel état OC-OO de $Nd_{0.5}Sr_{0.5}MnO_3$ (Couche mince 80 nm)

MERCI DE VOTRE ATTENTION