

Ordre paradoxal et dynamique de spin anisotrope dans CeRu₂Al₁₀

Jean-Michel Mignot

GDR MICO – Roscoff

CeM_2AI_{10} (*M* = Ru, Os, Fe)

- isolants Kondo
- ordre non conventionnel

b

С

Systèmes fortement corrélés d'électrons f – fermions lourds

Isolants Kondo

<u>Haute température</u> : diffusion incohérente des électrons de conduction par les moments des ions magnétiques

<u>Basse température</u> : régime de couplage fort avec renormalisation des paramètres

Comportement semiconducteur

Modèle d'Anderson périodique (PAM)

- Modèle à <u>deux bandes</u> hybridées (*V*), dont l'une sujette à de fortes corrélations coulombiennes (*U*)
- Effet de <u>cohérence</u> sur le réseau <u>périodique</u> des ions magnétiques
- Champ moyen → « Gap d'hybridation »
- Renormalisation par les corrélations : V→V
 gap direct (optique) ∝ V
 gap indirect (INS) ∝ V
 /W

Ouverture du gap $\Delta(T)$: $k_{\rm B}T^* \sim 1-10$ meV

 SmB_6 , YbB_{12} , TmSeCeNiSn, CeRhSb, $Ce_3Pt_4Bi_3$, Ce T_4Sb_{12} , UFe₄P₁₂, U₂Ru₂Sn, ...

Échange RKKY – corrélations AFM

Fermions lourds

Phase ordonnée AFM + param. de contrôle (P, x, H) \Rightarrow QCP, SC, etc.

Isolants Kondo

•En général non-magnétiques pour $T \rightarrow 0$

•Corrélations AFM résiduelles entre quasiparticules renormalisées

 \implies exciton de spin (Riseborough, JMMM 2001)

 Diffusion inélastique de neutrons
 Mode analogue à la résonance dans les HTC SmB₆ (Alekseev, JPhCM 1995)
 YbB₁₂ (Mignot, PRL 2005 ; Nemkovski, PRL 2007)

$Ce M_2 Al_{10}$ – nouvelle famille d'isolants Kondo

Orthorhombique, Cmcm (Thiede et al., 1998)

- Susceptibilité de type valence mixte (θ_P = -174 K, $T_{max} \approx 70$ K).
- Absence d'ordre magnétique (T > 40 mK). Forte anisotropie
- Forte remontée de résistivité à T < 20 K, jusqu'à 3000 µΩcm pour I // a, moins prononcée pour I // b et c
- La pression restaure un état fondamental métallique

Ce<mark>Ru₂Al₁₀ – un isolant Kondo ordonné</mark>

$CeRu_2AI_{10}$ – nature de la transition ?

AI(5)

AI(4)

AI(1)

AI(3)

AI(5)

AI(1) AI(4)

AI(3)

80

27AI-NQR

60

Ordre magnétique ou transition structurale ?

- Formation d'une ODC avec ouverture d'un gap sur la surface de Fermi Nishioka et al.
- Transition structurale : abaissement de symétrie (*Cmcm* → *Amm2* or *Pmmn*)
 ⇒ chaque site d' Al se scinde en deux sous-sites
 Matsumura et al.
- Appariement des ions Ce conduisant à un état fondamental singulet à $T < T_0$ Tanida et al.
- Formation d'une ODS (accompagnée d'une distorsion du réseau) due aux interactions RKKY suivant des « chaînes zigzag » de Ce Hanzawa

Étude par diffusion de neutrons (LLB, ILL)

Ordre à longue portée au-dessous de T₀
 ➡ diffraction poudre et monocristaux

- Origine magnétique ou structurale ?
 - analyse de polarisation sur monocristal

Spectre d'excitations de basse énergie
 diffusion inélastique, avec ou sans polarisation

Robert *et al.*, Phys. Rev. B **82**, 100404(R) (2010) Robert *et al.*, Phys. Rev. Lett. **109**, 267208 (2012)

Diffraction de neutrons sur poudre

GDR MICO – Roscoff

Int. Intensity (arb. units)

Diffraction de neutrons sur poudre

Ordre magnétique

Pic de surstructure (3,0,1) observé uniquement dans le canal spin-flip

Signal d'origine <u>magnétique</u>.

Ordre AFM de vecteur d'onde $\mathbf{k} = (0,1,0)$

Orientation du moment

Moment AFM du Ce n'a pas de composante suivant b*

Orientation du moment (quatre-cercles)

 Résultats indiquent µ || c, avec les orientations relatives ci-dessous :

Moment ordonné (d'après diffractogramme de poudre) : $\mu \approx 0.32(4) \mu_B$

$CeRv_2AI_{10}$ – nature de la transition ?

Ordre magnétique ou transition structurale ?

$CeRu_2AI_{10}$ – nature de la transition ?

Ordre magnétique

? Température de transition trop élevée, $T_0 = 27$ K $d_{Ce-Ce} > 5$ Å ; $T_0 \gg T_N^{[GdRu2Al10]} = 16.5$ K Takesaka, 2009 $T_0 \nearrow$ qd on va vers une valence mixte (pression ou Ru \longrightarrow Os) ? Pas de susceptibilité de type AFM χ_{\perp} pour $T < T_0$ Tanida, JPSJ 2010

 \star ²⁷Al-NQR : splitting des raies \rightarrow pas de champ magnétique interne

? Moment AFM (// c) n'est pas selon l'axe de facile aimantation (// a)

Échange anisotrope ?

Diffusion inélastique sur poudre (trois-axes, neutrons froids)

4F1 TAS, Orphée-LLB - E_f = 5.0 meV - Poudre

• $T << T_0$

Gap de spin + excitation vers 8 meV (pic bcp plus large que la résolution) amortissement, ou dispersion (moyenne de poudre sur une)?

• *T* ↗

Gap de spin se comble ; pic s'atténue, s'élargit, et son énergie diminue.

GDR MICO – Roscoff

Diffusion inélastique sur monocristal

1 🔍 🕺

Diffusion inélastique sur monocristal

🥸 🖉 🕅

Dispersion, intensité

Modèle RPA (code : Sylvain Petit)

Champ cristallinStrigari, PRB 2012 $(B_2^0, B_2^2, B_4^0, B_4^2, B_4^4) = (-1.326, -29.236, +1.013, -1.747, -5.317)$ K

+ Échange anisotrope

$\mathcal{H}_{i,j} = \sum_{\alpha} \mathcal{J}^{\alpha} S_i^{\alpha} S_j^{\alpha}$	TABLE I. Anisotropic exchange parameters (in units of K) used in the RPA calculation. Atomic positions (x_i, y_i, z_i) , $i = 1$: $(0, y, \frac{1}{4})$; $2 : (\frac{1}{2}, \frac{1}{2} + y, \frac{1}{4})$; $3 : (\frac{1}{2}, \frac{1}{2} - y, \frac{3}{4})$, 4 : $(0, -y, \frac{3}{4})$, with $y = 1.1239(3)$ [23].			
	Ce pairs (i, j)	\mathcal{J}^{a}	\mathcal{J}^b	\mathcal{J}^c
	$ \overline{(1,4); (2,3)} (1,3); (2,4) (1,2); (3,4) $	2.7 -0.9 1.1	2.7 -0.9 1.1	58 -0.9 1.1

🕸 💋 🕅

GDR MICO – Roscoff

Polarisation des modes

GDR MICO – Roscoff

Polarisation des modes

GDR MICO – Roscoff

Hybridation « directionnelle »

- Modèle simple champ cristallin + échange anisotrope insuffisant (dispersion, J_c irréaliste, μ_{AF}).
- Rôle de l'hybridation « *c-f »* avec l'environnement (anisotrope) des sites de Ce Sera, JPSJ 2013
- Écart à la contraction des lanthanides maximum selon l'axe *a*, négligeable selon *b*
- -RMN : fort champ hyperfin transféré (1158 Oe) au site Al[2] situé selon *a* à partir du site de Ce.

-Anisotropie très sensible à la pression

<u>Hypothèse</u> : hybridation préférentiellement suivant la direction *a* (Ce-AI[2])

→Fluctuations Kondo réduisant les corrélations AFM entre composantes $m_{\parallel a}$ A. Kondo, PRB 2011

Spectroscopie optique

- Plan (a, c)forte hybridation
- isolant Kondo « classique »
- $T_K \nearrow$ dans l'ordre Ru \longrightarrow Os \longrightarrow Fe

Direction b

- faible hybridation
- pic attribué à une ODC
- apparition liée à la transition à T_0

 CeM_2AI_{10} M = Ru, Os, Fe

- Nouveaux phénomènes liés à la physique des isolants Kondo
- Phase ordonnée non réductible aux mécanismes habituels (CEF, RKKY)
- Effets d'anisotropie très prononcés, mis en évidence pour la première fois dans la réponse magnétique dynamique d'une phase AFM (neut. polarisés)
- Hybridation « directionnelle » (cf. conductivité optique)
- Autres aspects : effets du champ, solutions solides (Ru-Rh, La-Ce, etc.)
- Effort théorique

Collaborations

LLBUniv. HiroshimaUniv. KochiJulien RobertMasafumi SeraTakashi NishiokaSylvain PetitHiroshi TanidaRiki Kobayashi *Gilles AndréDaiki TanakaMasahiro MatsumuraKotaro SaitoKotaro SaitoActuellement : JAEAAlexandre BatailleKotaro SaitoKotaro Saito