

Ordre paradoxal et dynamique de spin anisotrope dans CeRu₂Al₁₀

Jean-Michel Mignot

GDR MICO - Roscoff 10 janvier 2013

CeM_2AI_{10} (M = Ru, Os, Fe)

- isolants Kondo
- ordre non conventionnel

GDR MICO - Roscoff 10 janvier 2013

Systèmes fortement corrélés d'électrons f – fermions lourds

Haute température : diffusion incohérente des électrons de conduction par les moments des ions magnétiques

Basse température : formation d'états

singulets Kondo

- Renormalisation des paramètres du liquide de Fermi électronique ($m^* \sim 100 m_0$)
- Propriétés de « fermions lourds » :

$$C_P(T) = \gamma T$$
; $\chi(T) = \chi_0 + BT^2$; $\rho(T) = \rho_0 + AT^2$

- Supraconductivité non conventionnelle
- Criticalité quantique
- NFI

FL

CeAl₃, CeRu₂Si₂, CeCu₆,...

supra

CeCu₂Si₂, UPt₃, URu₂Si₂, CeCoIn₅,...

Isolants Kondo

<u>Haute température</u> : diffusion incohérente des électrons de conduction par les moments des ions magnétiques

<u>Basse température</u> : régime de couplage fort avec renormalisation des paramètres

Comportement semiconducteur

Modèle d'Anderson périodique (PAM)

Modèle à <u>deux bandes</u> hybridées (*V*), dont l'une sujette à de fortes corrélations coulombiennes (*U*)

Effet de <u>cohérence</u> sur le réseau <u>périodique</u> des ions magnétiques

- Champ moyen → « Gap d'hybridation »
- Renormalisation par les corrélations : V→V

gap direct (optique)
$$\propto \tilde{V}$$
 gap indirect (INS) $\propto \tilde{V}/W$

Ouverture du gap $\Delta(T)$: $k_B T^* \sim 1-10 \text{ meV}$

Isolants Kondo

 $\epsilon_{\rm f}$

 SmB_6 , YbB_{12} , TmSe CeNiSn, CeRhSb, $Ce_3Pt_4Bi_3$, CeT_4Sb_{12} , UFe_4P_{12} , U_2Ru_2Sn , ...

Échange RKKY – corrélations AFM

Compétition fluctuations Kondo ↔ échange RKKY

Fermions lourds

Phase ordonnée AFM + param. de contrôle (P, x, H) \Rightarrow QCP, SC, etc.

Isolants Kondo

•En général non-magnétiques pour $T \rightarrow 0$

Corrélations AFM résiduelles entre quasiparticules renormalisées

⇒ exciton de spin (Riseborough, JMMM 2001)

Diffusion inélastique de neutrons

Mode analogue à la résonance dans les HTC

SmB₆ (Alekseev, JPhCM 1995)

YbB₁₂ (Mignot, PRL 2005; Nemkovski, PRL 2007)

$Ce M_2 Al_{10}$ - nouvelle famille d'isolants Kondo

Orthorhombique, Cmcm (Thiede et al., 1998)

- Susceptibilité de type valence mixte (θ_P = -174 K, $T_{max} \approx 70$ K).
- Absence d'ordre magnétique (T > 40 mK). Forte anisotropie
- Forte remontée de résistivité à T < 20 K, jusqu'à 3000 μΩcm pour I // a, moins prononcée pour I // b et c
- La pression restaure un état fondamental métallique

CeRu₂Al₁₀ – un isolant Kondo ordonné

- Forte anisotropie (axe a facile)
- $\rho(T)$: pente négative, loi d'activation

Phase ordonnée $T < T_0$

- Dépendance exponentielle de χ and C_P ($\Delta \sim 100 \text{ K}$) \longrightarrow gap partiel sur la surface de Fermi
- Sous *P* : état isolant d'abord renforcé, puis supprimé

GDR MICO - Roscoff 10 janvier 2013

CeRu₂Al₁₀ – nature de la transition ?

Ordre magnétique ou transition structurale?

x Température de transition trop élevée, T_0 = 27 K

$$d_{\text{Ce-Ce}} > 5 \text{ Å} ; T_0 \gg T_{\text{N}}^{\text{[GdRu2Al10]}} = 16.5 \text{ K}$$

Takesaka, 2009

 $T_0 \nearrow \text{ qd on va vers une valence mixte (pression ou Ru <math>\longrightarrow \text{Os)}$

- \times Pas de susceptibilité de type AFM χ_{\perp} pour $T < T_0$ Tanida, JPSJ 2010
- × ²⁷Al-NQR : splitting des raies ⇒ pas de champ magnétique interne
- ✓ Moment magnétique du Ce participe à la transition Tanida., JPSJ 2010 T_0 décroît par substitution de La, ou sous champ magnétique Entropie de 0.7R ln2 à T_0 , R ln2 à 100 K (doublet fondamental)
- Champ interne (très faible) détecté par μ⁺SR

Interprétations proposées

- Formation d'une ODC avec ouverture d'un gap sur la surface de Fermi Nishioka et al.
- Transition structurale : abaissement de symétrie (Cmcm → Amm2 or Pmmn)
 ⇒ chaque site d' Al se scinde en deux sous-sites
 Matsumura et al.
- Appariement des ions Ce conduisant à un état fondamental singulet à $T < T_0$ Tanida et al.
- Formation d'une ODS (accompagnée d'une distorsion du réseau) due aux interactions RKKY suivant des « chaînes zigzag » de Ce Hanzawa

GDR MICO – Roscoff 10 janvier 2013

Étude par diffusion de neutrons (LLB, ILL)

- Ordre à longue portée au-dessous de T_0
 - **⇒** diffraction poudre et monocristaux

- Origine magnétique ou structurale ?
 - analyse de polarisation sur monocristal

- Spectre d'excitations de basse énergie
 - ➡ diffusion inélastique, avec ou sans polarisation

Robert *et al.*, Phys. Rev. B **82**, 100404(R) (2010) Robert *et al.*, Phys. Rev. Lett. **109**, 267208 (2012)

Diffraction de neutrons sur poudre

- ✓ Pics nucléaires : accord avec Cmcm (h+k = 2n; [h0l]: l=2n)
- ✓ Pics de surstructure observés à $T < T_0$ 011, 101, 120
- ➤ Peu de réflexions, statistique faible, superposition à certains pics nucléaires
 - \Rightarrow ordre magnétique [k = (0, 1, 0), μ_{AF} = 0.32(4) μ_{B}]

ou transition structurale → Pmmn (déplacement d'atomes Al) ?

Détail du signal aux bas angles

Diffraction de neutrons sur poudre

T = 1.8 K

T = 35 K

23.0

24.0

- ✓ Pics nucléaires : accord avec Cmcm (h+k = 2n; [h0l]: l=2n)
- \checkmark Pics de surstructure observés à $T < T_0$ 011, 101, 120 + 010 and 211
- ➤ Peu de réflexions, statistique faible, superposition à certains pics nucléaires
 - \Rightarrow ordre magnétique [\mathbf{k} = (0, 1, 0), μ_{AF} = 0.32(4) μ_{B}]

Détail du signal aux bas angles

22.0

19.0

20.0

21.0

Scattering angle (degree)

Ordre magnétique

⇒ la diffusion magnétique est purement <u>spin-flip</u> (diffusion cohérente nucléaire toujours non spin-flip)

Pic de surstructure (3,0,1) observé uniquement dans le canal spin-flip

✓ Signal d'origine magnétique.

Ordre AFM de vecteur d'onde k = (0,1,0)

Orientation du moment

Composante de moment **parallèle à** *b** est <u>non spin-flip</u>
Composante dans le plan (*a*,*c*) est <u>spin-flip</u>

Pic de surstructure (3,0,1) pas observé dans le canal non spin-flip

► Moment AFM du Ce n'a pas de composante suivant b*

Orientation du moment (quatre-cercles)

$$T = 11-18 \text{ K} < T_0$$

(1, 2, 3, 4) = (+--+) (-+-+)

 Résultats indiquent µ || c, avec les orientations relatives ci-dessous :

Moment ordonné (d'après diffractogramme de poudre) : $\mu \approx 0.32(4) \mu_B$

CeRu₂Al₁₀ – nature de la transition ?

Ordre magnétique ou transition structurale?

? Température de transition trop élevée, T_0 = 27 K

$$d_{\text{Ce-Ce}} > 5 \text{ Å} ; T_0 \gg T_N^{\text{[GdRu2Al10]}} = 16.5 \text{ K}$$

Takesaka, 2009

 T_0 qd on va vers une valence mixte (pression ou Ru \longrightarrow Os)

? Pas de susceptibilité de type AFM χ_{\perp} pour $T < T_0$ Tanida, JPSJ 2010

x 27AI-NQR: splitting des raies ⇒ pas de champ magnétique interne

Matsumura et al., JPSJ 2009

CeRu₂Al₁₀ – nature de la transition ?

Ordre magnétique

? Température de transition trop élevée, T_0 = 27 K

$$d_{\text{Ce-Ce}} > 5 \text{ Å} ; T_0 \gg T_{\text{N}}^{\text{[GdRu2Al10]}} = 16.5 \text{ K}$$

Takesaka, 2009

 T_0 qd on va vers une valence mixte (pression ou Ru \longrightarrow Os)

? Pas de susceptibilité de type AFM χ_{\perp} pour $T < T_0$ Tanida, JPSJ 2010

× ²⁷Al-NQR : splitting des raies → pas de champ magnétique interne

? Moment AFM (// c) n'est pas selon l'axe de facile aimantation (// a)

Échange anisotrope?

Diffusion inélastique sur poudre (trois-axes, neutrons froids)

Gap de spin + excitation vers 8 meV (pic bcp plus large que la résolution) amortissement, ou dispersion (moyenne de poudre sur une)?

• T ↗

Gap de spin se comble ; pic s'atténue, s'élargit, et son énergie diminue.

Diffusion inélastique sur monocristal

Diffusion inélastique sur monocristal

Dispersion, intensité

Modèle RPA (code : Sylvain Petit)

Champ cristallin

Strigari, PRB 2012

$$(B_2^0, B_2^2, B_4^0, B_4^2, B_4^4) = (-1.326, -29.236, +1.013, -1.747, -5.317) \text{ K}$$

+ Échange anisotrope

$$\mathcal{H}_{i,j} = \sum_{\alpha} \mathcal{J}^{\alpha} S_i^{\alpha} S_j^{\alpha}$$

TABLE I. Anisotropic exchange parameters (in units of K) used in the RPA calculation. Atomic positions (x_i, y_i, z_i) , i = 1: $(0, y, \frac{1}{4})$; $2 : (\frac{1}{2}, \frac{1}{2} + y, \frac{1}{4})$; $3 : (\frac{1}{2}, \frac{1}{2} - y, \frac{3}{4})$, 4: $(0, -y, \frac{3}{4})$, with y = 1.1239(3) [23].

Ce pairs (i, j)	\mathcal{J}^a	\mathcal{J}^b	\mathcal{J}^c
(1,4); (2,3)	2.7	2.7	58
(1,3); (2,4)	-0.9	-0.9	-0.9
(1,2); (3,4)	1.1	1.1	1.1

Polarisation des modes

Calculs RPA M_{aa} M_{bb} 10 Energy (meV) 2 1.5 2.5

Corrélations AFM très anisotropes

$$E = 4.5 \text{ meV}$$
:

$$M_{bb} \approx 0$$
 $M_{aa}/M_{cc} \approx 5$

$$I_x^{\rm sf} \propto M_{aa}(\mathbf{q})\sin^2\alpha + M_{bb}(\mathbf{q}) + M_{cc}(\mathbf{q})\cos^2\alpha,$$
 (1a)

3

(h 0 1)

1.5

2

(h 0 1)

2.5

3

$$I_{y}^{\mathrm{sf}} \propto M_{bb}(\mathbf{q}),$$
 (1b)

$$\overline{I_z^{\rm sf}} \propto M_{aa}(\mathbf{q}) \sin^2 \alpha + M_{cc}(\mathbf{q}) \cos^2 \alpha, \tag{1c}$$

Polarisation des modes

ILL / IN20, axe b vertical

Corrélations AFM très anisotropes

$$E = 4.5 \text{ meV}$$
:

$$M_{bb} \approx 0$$
 $M_{aa}/M_{cc} \approx 5$

$$I_x^{\rm sf} \propto M_{aa}(\mathbf{q})\sin^2\alpha + M_{bb}(\mathbf{q}) + M_{cc}(\mathbf{q})\cos^2\alpha,$$
 (1a)

$$I_{\nu}^{\rm sf} \propto M_{bb}(\mathbf{q}),$$
 (1b)

$$I_z^{\rm sf} \propto M_{aa}(\mathbf{q})\sin^2\alpha + M_{cc}(\mathbf{q})\cos^2\alpha,$$
 (1c)

Hybridation « directionnelle »

- Modèle simple champ cristallin + échange anisotrope insuffisant (dispersion, J_c irréaliste, μ_{AF}).
- Rôle de l'hybridation « *c-f* » avec l'environnement (anisotrope) des sites de Ce Sera, JPSJ 2013
- Écart à la contraction des lanthanides maximum selon l'axe a, négligeable selon b
- -RMN: fort champ hyperfin transféré (1158 Oe) au site Al[2] situé selon a à partir du site de Ce.
- -Anisotropie très sensible à la pression

<u>Hypothèse</u>: hybridation préférentiellement suivant la direction a (Ce-Al[2])

→Fluctuations Kondo réduisant les corrélations AFM entre composantes $m_{\parallel a}$ A. Kondo, PRB 2011

Spectroscopie optique

Plan (a, c)

- forte hybridation
- isolant Kondo « classique »
- $T_K \nearrow$ dans l'ordre Ru \longrightarrow Os \longrightarrow Fe

Direction b

- faible hybridation
- pic attribué à une ODC
- apparition liée à la transition à T_0

?...

CeM_2AI_{10} M = Ru, Os, Fe

- Nouveaux phénomènes liés à la physique des isolants Kondo
- Phase ordonnée non réductible aux mécanismes habituels (CEF, RKKY)
- Effets d'anisotropie très prononcés, mis en évidence pour la première fois dans la réponse magnétique dynamique d'une phase AFM (neut. polarisés)
- Hybridation « directionnelle » (cf. conductivité optique)
- Autres aspects: effets du champ, solutions solides (Ru-Rh, La-Ce, etc.)
- Effort théorique

GDR MICO – Roscoff 10 janvier 2013 26

Collaborations

LLB

Julien Robert

Sylvain Petit

Gilles André

Kotaro Saito

Alexandre Bataille

Univ. Hiroshima

Masafumi Sera

Hiroshi Tanida

Daiki Tanaka

Univ. Kochi

Takashi Nishioka

Riki Kobayashi *

Masahiro Matsumura

Actuellement : JAEA