Tour d'horizon de la théorie des système magnétiques bidimensionnels frustrés

Matthieu Mambrini

Laboratoire de Physique Théorique CNRS & UPS - Toulouse, France

> GDR MICO JANVIER 2013 Roscoff

Contrainte globale

Satisfaction simultanée d'un ensemble de contraintes locales

Matthieu Mambrini Tour d'horizon de la t

 \Leftrightarrow

Contrainte globale

Satisfaction simultanée d'un ensemble de contraintes locales

Matthieu Mambrini

 \Leftrightarrow

Contrainte globale

Satisfaction simultanée d'un ensemble de contraintes locales

Matthieu Mambrini

 \Leftrightarrow

Contrainte globale

Satisfaction simultanée d'un ensemble de contraintes locales

Matthieu Mambrini

 \Leftrightarrow

$$| \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

$$\vec{S}_{i} \cdot \vec{S}_{j} = S_{i}^{z} S_{j}^{z} + \frac{1}{2} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+})$$

$$-\frac{1}{4} | \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

$$\frac{1}{2} | \dots \uparrow \downarrow \dots \uparrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

Fluctuations quantiques dans les sytèmes frustrés

désordre à T=0

$$| \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

$$\vec{S}_{i} \cdot \vec{S}_{j} = \underbrace{S_{i}^{z} S_{j}^{z}}_{I} + \underbrace{\frac{1}{2} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+})}_{I}$$

$$- \frac{1}{4} | \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

$$\frac{1}{2} | \dots \uparrow \downarrow \dots \uparrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

Fluctuations quantiques dans les sytèmes frustrés

$$\mathbf{A} = \left| \mathbf{A} \right\rangle \left\langle \mathbf{A} \right\rangle + \left| \mathbf{A} \right\rangle \left\langle \mathbf{A} \right\rangle \right|$$

désordre à T=0

$$| \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

$$\vec{S}_{i} \cdot \vec{S}_{j} = \underbrace{S_{i}^{z} S_{j}^{z}}_{I} + \underbrace{\frac{1}{2} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+})}_{I}$$

$$- \frac{1}{4} | \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

$$\frac{1}{2} | \dots \uparrow \downarrow \dots \uparrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

Fluctuations quantiques dans les sytèmes frustrés

$$\mathbf{A} = \left| \mathbf{A} \right\rangle \left\langle \mathbf{A} \right\rangle + \left| \mathbf{A} \right\rangle \left\langle \mathbf{A} \right\rangle \right|$$

désordre à T=0

$$| \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

$$\vec{S}_{i} \cdot \vec{S}_{j} = \underbrace{S_{i}^{z} S_{j}^{z}}_{I} + \underbrace{\frac{1}{2} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+})}_{I}$$

$$- \frac{1}{4} | \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

$$\frac{1}{2} | \dots \uparrow \downarrow \dots \uparrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$$

Fluctuations quantiques dans les sytèmes frustrés

$$\mathbf{A} = \left| \mathbf{A} \right\rangle \left\langle \mathbf{A} \right\rangle + \left| \mathbf{A} \right\rangle \left\langle \mathbf{A} \right\rangle \right|$$

Panorama (partiel...)

- Modèles type Heisenberg
- Interaction multispins
- Modèles de plus haute symétrie
- Modèles spins orbitaux
- Modèles 2d Heisenberg spin 1/2

Théorie

- Quels états ? Quelles excitations ?
- Signatures / caractérisation / propriétés
- Problèmes théoriques / expérimentaux

Développements récents autour de kagome

- Diagonalisations exactes
- Fonction d'onde (méthodes variationnelles)
- Hamiltonien (modèles effectifs)

- Modèles sous champ
- Modèles de dimères
- Interaction longue portée

(...)

Spin ice

Materials, Experiments, Theory

🙆 Springer 🛛 🔚

Claudine Lacroix

rédéric Mila

2011

Variationnal projected BCS states DMRG (Density-Matrix Renormalization Group) MPS (Matrix Product States), PEPS, MERA

CORE (Contractor renormalization) GQDM (Generalized Quantum Dimer Models)

Quels états à T=0 ?

Classification selon les symétries brisées ou non

$$\begin{split} \mathcal{H} = &J \sum_{(i,j)} \vec{S}_i . \vec{S}_j \\ \begin{bmatrix} \vec{S}_{\text{tot}}, \mathcal{H} \end{bmatrix} = \vec{0} \quad \vec{S}_{\text{tot}} = \left(\sum_i \vec{S}_i \right) \\ & \mathbf{SU(2)} \\ \mathbf{SU(2)} \qquad \qquad \mathcal{H} |\psi\rangle = E |\psi\rangle \\ & \mathbf{Continues} \qquad \qquad \mathcal{S} |\psi\rangle = s |\psi\rangle \end{split}$$

Translations, rotation...

Discrètes

Quels états à T=0?

Classification selon les symétries brisées ou non

$$\begin{array}{l} \mathcal{H} = J \sum_{(i,j)} \vec{S}_i . \vec{S}_j \\ \left[\vec{S}_{\text{tot}}, \mathcal{H}\right] = \vec{0} \quad \vec{S}_{\text{tot}} = \left(\sum_i \vec{S}_i\right) \\ \mathbf{SU(2)} \\ \mathbf{Continues} \\ \mathbf{Continues} \\ \mathcal{H} | \psi \rangle = E | \psi \rangle \\ \mathcal{S} | \psi \rangle \neq s | \psi \rangle \\ \mathcal{S} | \psi \rangle \neq s | \psi \rangle \\ \end{array} \begin{array}{l} \left[\mathcal{S}, \mathcal{H} \right] = 0 \\ \mathcal{H} | \psi \rangle = E | \psi \rangle \\ \mathcal{H} | \psi \rangle = s | \psi \rangle \\ \mathcal{H} | \psi \rangle = s | \psi \rangle \\ \mathcal{H} | \psi \rangle = E | \psi \rangle \\ \mathcal$$

Présence dans le spectre d'états dégénérés mais de symétries différentes

L'ordre antiferromagnétique

• Etats de spins totaux différents dégénérés à la limite thermodynamique $| \dots \uparrow \downarrow \dots \uparrow \downarrow \uparrow \downarrow \dots \uparrow \downarrow \dots \rangle$ □ Ondes de spin $S^z = S - a^{\dagger}a^{\dagger}a^{\dagger}$ petit $[a,a^{\dagger}] = 1$ $S^+ = \sqrt{2S}\sqrt{1 - \frac{a^{\dagger}a}{2S}}a \approx \sqrt{2S} a$ $S^- = \sqrt{2S}a^{\dagger}\sqrt{1 - \frac{a^{\dagger}a}{2S}} \approx \sqrt{2S} a^{\dagger}$ $\mathcal{H} = E_0 + \sum_{\vec{k}} \varepsilon(\vec{k})c^{\dagger}_{\vec{k}}c^{\dagger}_{\vec{k}} \qquad \varepsilon(\vec{k}) \approx ||\vec{k}|| \text{ pour } \vec{k} \approx \vec{\alpha}$ Modes de Goldstone $\varepsilon(\vec{k}) \approx ||\vec{k} - \vec{\pi}|| \text{ pour } \vec{k} \approx \vec{\pi}$

Symétrie SU(2) et symétrie de translation brisées

L'ordre antiferromagnétique

O Etats de spins totaux différents dégénérés à la limite thermodynamique $| \ldots \uparrow \downarrow \ldots \uparrow \downarrow \downarrow \downarrow \uparrow \downarrow \ldots \uparrow \downarrow \ldots \rangle$ $S^z = S - a^{\dagger}a$ □ Ondes de spin $\left[a,a^{\dagger}\right] = 1$ $S^+ = \sqrt{2S} \sqrt{1 - \frac{a^{\dagger}a}{2S}a} \approx \sqrt{2S} a$ $S^- = \sqrt{2S}a^\dagger \sqrt{1 - \frac{a^\dagger a}{2S}} \approx \sqrt{2S} a^\dagger$ $\mathcal{H} = E_0 + \sum_{\vec{k}} \varepsilon(\vec{k}) c^{\dagger}_{\vec{k}} c_{\vec{k}} \qquad \varepsilon(\vec{k}) \approx ||\vec{k}|| \ \text{pour} \ \vec{k} \approx \vec{\mathrm{o}}$ $\varepsilon(\vec{k}) \approx ||\vec{k} - \vec{\pi}||$ pour $\vec{k} \approx \vec{\pi}$ Modes de Goldstone Huse & Elser, Phys. Rev. Lett. (1988) Jolicoeur & Le Guillou, Phys. Rev. B (1989) Bernu, Lhuillier & Pierre, Phys. Rev. Lett. (1992) Bernu, Lecheminant, Lhuillier & Pierre, Phys. Rev. B 50 (1994)

Symétrie SU(2) et symétrie de translation brisées

Nématiques de spins

Ordre antiferromagnétique à longue portée

 $\stackrel{\stackrel{\frown}{\leftarrow}}{\Rightarrow}$

SU(2) brisée

Nématiques de spins

Ordre antiferromagnétique à longue portée

Non ! Les corrélations de spin ne se limitent pas à $\langle \vec{S}_i . \vec{S}_j \rangle$

$$Q_{12}^{\alpha\beta} = S_1^{\alpha}S_2^{\beta} + S_1^{\beta}S_2^{\alpha} - \frac{2}{3}(\mathbf{S}_1 \cdot \mathbf{S}_2)\delta_{\alpha\beta}$$

partie symétrique

 $\mathbf{P}_{12} = \mathbf{S}_1 \times \mathbf{S}_2$ partie antisymétrique

Nématiques de spins

Ordre antiferromagnétique à longue portée

Non ! Les corrélations de spin ne se limitent pas à $\langle \vec{S}_i . \vec{S}_j \rangle$

$$Q_{12}^{\alpha\beta} = S_1^{\alpha}S_2^{\beta} + S_1^{\beta}S_2^{\alpha} - \frac{2}{3}(\mathbf{S}_1 \cdot \mathbf{S}_2)\delta_{\alpha\beta}$$

partie symétrique

 $\mathbf{P}_{12} = \mathbf{S}_1 \times \mathbf{S}_2$ partie antisymétrique

Matthieu Mambrini

Cristaux de liens de valence

Albuquerque, Schwandt, Hetényi, Capponi, Mambrini, Läuchli, Pys. Rev. B (2011)

Cristaux de liens de valence

Et après ?...

- Hierarchie des fonctions de corrélation
- Restoration des symétries discrètes

Liquide : aucune brisure de symétrie

Et après ?...

Hierarchie des fonctions de corrélation

Restoration des symétries discrètes

Une contrainte sur le spectre

Une contrainte sur le spectre

Comment concilier absence d'ordre avec ces deux scénarios ?

 $- \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right)$$

 $\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$ $\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right)$

Confinement Spinons non observables

Fractionalisation : exemple du liquide \mathbb{Z}_2

▶ Déconfinement ≠ Absence d'interaction

- Champ de jauge (sur réseau)
- Variables vivant sur les liens

$$A_{ij} \in \{0,\pi\}$$

$$\mathbb{Z}_2$$

• Déplacement d'un spinon $c_{0\uparrow}^{\dagger} \exp (iA_{01} + \dots + iA_{(n-1)n}) c_{n\uparrow}$

- Etats a priori différents et dégénérés
- Indistinguable par une observable locale

Où / Comment trouver un liquide \mathbb{Z}_2 / U(1)?

Théorie

Modèles de spin ?

« artificiel »

- Modèles type « code torique »^ℤ₂
 Modèles SU(2) multi-spins^ℤ₂
 Modèles de dimères quantiques^ℤ₂

• Heisenberg kagome $\mathbb{Z}_2/U(1)$??

« réaliste »

Caractérisation

- Spectres, gaps / absence de gaps $\mathbb{Z}_2/U(1)$
- Fonctions de corrélations $\mathbb{Z}_2/U(1)$
- Propriétés des états dégénérés²
- Entropie de von Neumann \mathbb{Z}_2

Expérience

Systèmes

- Frustrés $\mathbb{Z}_2/U(1)$
- Spin ¹/₂-entier / maille $\mathbb{Z}_2/U(1)$

Caractérisation

- Pas de mise en ordre à basse température $\mathbb{Z}_2/U(1)$
- Gaps^{\mathbb{Z}_2}. Comportement activé de Cy et χ

011 Absence de gapU(1). Cv~T² et~ χ ~T

• Contiunuum à deux spinons en diffusion inélastique de neutrons^{\mathbb{Z}_2}

Lecheminant, Bernu, Lhuillier, Pierre & Sindzingre, Phys. Rev. B (1997)

• Gap de spin à la limite thermodynamique ?

Waldtmann, Everts, Lhuillier, Sindzingre, Lecheminant & Pierre, Eur. Phys. J. B (1998) • Pas d'interprétation simple des singulets de basse énergie en terme de VBC

Number	$2\langle \vec{S}_i \cdot \vec{S}_j \rangle$	k	R_3	R_2	σ	Deg.	VBC-1	VBC-2	VBC-3
1	43837653	0	1	1	1	1	*b	*	*
2	43809562	В	$e^{\pm 2i\pi/3}$			4			
3	43807091	0	$e^{\pm 2i\pi/3}$	1		2			*
4	43799346	0	1	1	1	1			
5	43785105	C			1	6	*b		
6	43758510	0	1	-1	1	1			*
7	43758455	A		1	1	3	*b		*
8	43751941	C			-1	6	*a		
9	43721566	0	1	1	-1	1	*a		*
10	43718796	0	$e^{\pm 2i\pi/3}$	1		2			*
11	43714765	A		-1	-1	3			*
12	43705108	0	$e^{\pm 2i\pi/3}$	-1		2			*
13	43703981	В	1		1	2	*b		
14	43703469	A		-1	1	3			*
15	43685867	0	1	-1	-1	1			*
16	43685319	В	1		-1	2	*a		
17	43683757	A		1	-1	3	*a	*	*
44	-0.43474519	0	$e^{\pm 2i\pi/3}$	-1		2			*

Misguich & Sindzingre, Journal of Physics: Condens. Matter (2007)

Matthieu Mambrini

Depuis 2008

Obstacle majeur : la taille des échantillons

Fonction d'onde

Variationnal projected BCS states

Iqbal, Becca, Sorella, Poilblanc, arXiv:1209.1858

DMRG (Density-Matrix Renormalization Group)

Jiang, Weng & Sheng, Phys. Rev. Lett. (2008) Yan, Huse, White, Science (2011) Depenbrock, McCulloch & Schollwöck, Phys. Rev. Lett. (2012) Jiang, Wang & Balents, Nature Physics (2012)

MPS (Matrix Product States), PEPS, MERA

Evenbly & Vidal, Phys. Rev. Lett. (2010)

• Hamiltoniens (modèles effectifs)

CORE (Contractor renormalization)

Capponi, Chandra, Auerbach & Weinstein, arXiv:1210.5519

GQDM (Generalized Quantum Dimer Models)

Poilblanc, Mambrini & Schwandt, Phys. Rev. B (2010) Schwandt, Mambrini & Poilblanc, Phys. Rev. B (2010) Poilblanc & Misguich, Phys. Rev. B (2011)

Diagonalisations exactes

48 sites !

Laüchli, Johanni, Moessner, unpublished (2012)

Kagomé dans la base des états VB proche voisins

- Bonne description des singulets de basse énergie
- Point de départ raisonnable pour décrire le fondamental

• Objectif : un (G)QDM relié de manière quantitative au modèle microscopique

Zeng & Elser, Phys. Rev. B (1995) Mila, Phys Rev. Lett. (1998) Mambrini & Mila, Eur. Phys. J B (2000)

Ralko, Mambrini & Poilblanc, Poilblanc, Mambrini & Schwandt, Phys. Rev. B (2010) Schwandt, Mambrini & Poilblanc, Phys. Rev. B (2010) Albuquerque, Schwandt, Hetényi, Capponi, Mambrini, Läuchli, Pys. Rev. B (2011)

$$\hat{\mathcal{H}}_{\text{eff}} = -\frac{4}{5} \boxed{} \boxed{} + \frac{1}{5} \boxed{} \boxed{} + \frac{16}{63} \boxed{} \boxed{} \boxed{} + \frac{16}{63} \boxed{} \boxed{} \boxed{} + \frac{16}{63} \boxed{} \boxed{} \boxed{} \boxed{}$$

$$+\frac{2}{63}$$
 + $\frac{2}{63}$ + $\frac{2}{63}$ + $\frac{2}{63}$ - $\frac{16}{255}$ - $\frac{16}{255}$ - $\frac{16}{255}$

Tour d'horizon de la théorie des systèmes magnétiques bidimensionnels frustrés

 $\mathcal{H}|\psi\rangle = E \mathcal{O}|\psi\rangle \qquad \qquad \mathcal{H}^{\text{eff}} = \mathcal{O}^{-1/2}\mathcal{H}\mathcal{O}^{-1/2}$ Problème aux valeurs Opérateur hermitien (creux)

propres généralisé (plein)

Matthieu Mambrini

Base orthogonale

Kagomé dans la base des états VB proche voisins

- Bonne description des singulets de basse énergie
- Point de départ raisonnable pour décrire le fondamental

• Objectif : un (G)QDM relié de manière quantitative au modèle microscopique

Zeng & Elser, Phys. Rev. B (1995) Mila, Phys Rev. Lett. (1998) Mambrini & Mila, Eur. Phys. J B (2000)

Ralko, Mambrini & Poilblanc, Poilblanc, Schwandt & Mambrini, Phys. Rev. B (2010) Schwandt, Mambrini & Poilblanc, Phys. Rev. B (2010) Albuquerque, Schwandt, Hetényi, Capponi, Mambrini, Läuchli, Pys. Rev. B (2011)

$$\hat{\mathcal{H}}_{\text{eff}} = -\frac{4}{5} \boxed{\mathbf{O}} + \frac{1}{5} \boxed{\mathbf{O}} + \frac{16}{63} \boxed{\mathbf{D}} + \frac{16}{63} \boxed{\mathbf{O}} + \frac{16}{63} \boxed{\mathbf{O}} + \frac{16}{63} \boxed{\mathbf{O}} + \frac{16}{63} \boxed{\mathbf{O}} + \frac{2}{63} \boxed{\mathbf{O}} + \frac{2}{63} \boxed{\mathbf{O}} - \frac{16}{255} \boxed{\mathbf{O}} + \frac{2}{255} \boxed{\mathbf{O}} + \frac{2}{255}$$

$$-\frac{16}{255}$$
 + $\frac{1}{255}$ + $\frac{1}{255}$ + $\frac{1}{255}$ + $\frac{1}{255}$ + $\frac{1}{255}$

G. Misguich, D. Serban, and V. Pasquier, Phys. Rev. Lett. 89, 137202 (2002)

$$\begin{split} \hat{\mathcal{H}}_{\text{interp.}}(\gamma, J_{12}) &= \gamma \hat{\mathcal{H}}_{\text{eff}} + (1 - \gamma) \hat{\mathcal{H}}_{RK} \\ &+ \left(J_{12} + \frac{1}{4}(\gamma - 1)\right) \end{split}$$

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= -\frac{4}{5} \underbrace{\bigcirc} + \frac{1}{5} \underbrace{\bigcirc} + \frac{16}{63} \underbrace{\bigcirc} + \underbrace{\bigcirc$$

Poilblanc, Mambrini & Schwandt, Phys. Rev. B (2010)

$$\sum_{s_1\cdots s_N} \operatorname{Tr}(A^{s_1}\cdots A^{s_N}) |s_1\cdots s_N\rangle$$

- Sytème 2d simulé comme un système 1d
- Accès à de très grandes tailles
- Propriétés d'intrication accessibles via la matrice densité

$$S(A) \sim \sigma L - \gamma + \cdots$$

Jiang, Weng & Sheng, Phys. Rev. Lett. (2008) Yan, Huse, White, Science (2011) Depenbrock, McCulloch & Schollwöck, Phys. Rev. Lett. (2012) Jiang, Wang & Balents, Nature Physics (2012)

Evenbly & Vidal, Phys. Rev. Lett. (2010)

Jiang, Weng & Sheng, Phys. Rev. Lett. (2008)

Matthieu Mambrini

0.2

Depenbrock, McCulloch & Schollwöck, Phys. Rev. Lett. (2012)

Matthieu Mambrini T

Depenbrock, McCulloch & Schollwöck, Phys. Rev. Lett. (2012)

$$S(A) \sim \sigma L - \gamma + \cdots$$

Liquide de spins
$$\mathbb{Z}_2$$

Fonctions fermioniques projetées

Iqbal, Becca, Sorella, Poilblanc, arXiv:1209.1858

Représentation fermionique

$$\begin{split} \vec{\mathbf{S}}_{i} &= \frac{1}{2} c_{i,\alpha}^{\dagger} \vec{\tau}_{\alpha,\beta} c_{i,\beta} \\ \mathcal{H} &= -\frac{1}{2} \sum_{i,j,\alpha,\beta} J_{ij} \left(c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \frac{1}{2} c_{i,\alpha}^{\dagger} c_{i,\alpha} c_{j,\beta}^{\dagger} c_{j,\beta} \right) \\ c_{i,\alpha}^{\dagger} c_{i,\alpha} &= 1 \qquad c_{i,\alpha} c_{i,\beta} \epsilon_{\alpha\beta} = 0 \end{split}$$

Champ moyen

$$\begin{split} \mathcal{H}_{\rm MF} &= \sum_{i,j,\alpha} (\chi_{ij} + \mu \delta_{ij}) c^{\dagger}_{i,\alpha} c_{j,\alpha} + \sum_{i,j} \{ (\Delta_{ij} + \zeta \delta_{ij}) c^{\dagger}_{i,\uparrow} c^{\dagger}_{j,\downarrow} + {\rm h.c.} \} \\ \langle c^{\dagger}_{i,\alpha} c_{i,\alpha} \rangle &= 1 \quad \langle c_{i,\alpha} c_{i,\beta} \rangle \epsilon_{\alpha\beta} = 0 \end{split}$$

Contrainte : 1 fermion par site

$$\begin{split} \left| \Psi_{\mathrm{Proj}}(\chi_{ij}, \Delta_{ij}, \mu) \right\rangle &= \mathcal{P}_{G} |\Psi_{\mathrm{MF}}(\chi_{ij}, \Delta_{ij}, \mu, \zeta) \rangle \\ \\ \mathcal{P}_{G} &= \prod_{i} (1 - n_{i,\uparrow} n_{i,\downarrow}) \end{split}$$

Quelques pas Lanczos

$$|\Psi_{p-LS}\rangle = \left(1 + \sum_{m=1,\dots,p} \alpha_m \mathcal{H}^m\right) |\Psi_{VMC}\rangle$$

Extrapolation variance nulle

$$E = \langle \mathcal{H} \rangle / N$$

$$\sigma^2 = (\langle \mathcal{H}^2 \rangle - E^2) / N$$

$$E \simeq E_0 + \text{const} \times \sigma^2$$

Fonctions fermioniques projetées

Iqbal, Becca, Sorella, Poilblanc, arXiv:1209.1858

Liquide de spins U(1) algébrique (sans gap)

Fonctions fermioniques projetées

Iqbal, Becca, Sorella, Poilblanc, arXiv:1209.1858

Laüchli, Johanni, Moessner, unpublished (2012)

- -0.4383(2) Depenbrock, McCulloch & Schollwöck, Phys. Rev. Lett. (2012)
- $-0.437845(4) \qquad \text{Iqbal, Becca, Sorella, Poilblanc, arXiv:1209.1858}$
- -0.43663 Jiang, Weng & Sheng, Phys. Rev. Lett. (2008)

- Evaporation des singulets ?
- Dégénérescence topologique \mathbb{Z}_2 ?
- Brisure de translation peu probable

Laüchli, Johanni, Moessner, unpublished (2012)

Laüchli, Johanni, Moessner, unpublished (2012)

Matthieu Mambrini

Laüchli, Johanni, Moessner, unpublished (2012)

• GQDM Heisenberg modifié (\mathbb{Z}_2)

Exact

Conclusion

Claudine Lacroix Philippe Mendels Frédéric Mila *Editors*

D Springer

- Grande variété de phases ordre magnétique ... liquides de spins
- Modèles sans désordre... Modèles locaux...

états désordonnés T=0 effets non-locaux (topologiques) Introduction to Frustrated Magnetism

SPRINGER SERIES IN SOLID-STATE SCIENCES 164

Materials, Experiments, Theory

Mises en évidence expérimentale Modèle de Heisenberg SU(2) Liquides de spins Spinons déconfinés Fractionalisation Visons Propriétés topologiques Intrication

Composés réels

Modèles microscopiques « réalistes » Théories de jauge sur réseau Modèles « artifiels »

Matthieu Mambrini