L'effet de désordre sur les propriétés des supraconducteurs à base de fer

Marcin Konczykowski,

Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau, France

Collaborateurs:

C.J. van der Beek (LSI)

Ruslan Prozorov, Ames Laboratory, Iowa State University, USA

Takasada Shibauchi, Yuta Muzakami, Shibaru Kasahara, Yuji Matsuda, *Kyoto University, Japan*

Samples

- Ba(FeAs_{1-x}P_x)₂: Shibaru Kasahara, Kyoto University, Japan
- LiFeAs: Kee Hoon Kim, Seoul National University, Seoul, Korea
- BaK(FeAs)₂: Hai-Hu Wen, Nanjing University, Nanjing, P. R. China
- Sr(FeAs_{1-x}P_x)₂, Ba(Fe_{1-x}, Ru_xAs)₂: Paul C. Canfield, The Ames Laboratory, USA
- FeSeTe: Zhiqiang Mao, Tulane University, New Orleans, USA

Hall arrays: Vincent Mosser, ITRON, Issy-les-Moulineaux, France

Irradiations:

electrons: SIRIUS platform Ecole Polytechnique swift heavy ions: GANIL (Caen)

Disorder in superconductors Outline

Flux pinning: As grown samples: Superposition of strong pinning from nanometer scale defects and of weak collective pinning from charged defects.

Irradiated materials: Columnar defects, Bose glass type of pinning.

Pairbraking: No effect from large (columnar defects) Strong depression of T_c , increase of resistivity and modification of superconducting gap structure by point defects.

Implication for pairing mechanism.

Two types of irradiation induced disorder

Swift heavy ions: typically 5.8 GeV Pb

Columnar amorphous tracks few nanometers diameter Strong pinning for H// tracks

Electron irradiation 2.5 MeV of samples cooled to 20K. Creation of stable Frenkel pairs on all sub-lattices Partial recombination of defects on warming but final state: uniform spread of point defects

Defauts crées par irradiation

SIRIUS platform NEC Pelltron accelerator

Target at low temperature (20K liquid hydrogen) to prevent defect migration electron beam energy from 0.3 to 2.5 MeV In-situ measurements: resistivity (operating, AC Hall in progress)

Magnetometry using 2D Electron Gas Hall sensor gradiometer

Local gradient dB/dx vs. local induction B isothermal loops

- Pseudomorphic AlGaAs/InGaAs/GaAs heterostructure
- Passivated, ion implantation delimited line of 10 sensors
- Sensor size 3x3μm² each, spaced by 10μm or 20μm
- Constant sensitivity 80mΩ/Gauss (from milliK to RT).
- Spatially resolved measurement of the local flux density B
- e.g single crystal Ba(Fe_{0.76}Ru_{0.24}As_{0.64})₂ cut to rectangle

 $1G/\mu m=16000 A/cm^{2}$

Magnetometry using 2D Electron Gas Hall sensor in AC mode

Disorder in pristine material: two origins of pinning

Low field, central peak "Strong pinning", nm scale fluctuation of T_c

 $n_{\rm i}\xi^3 << 1$ $j_{\rm c} = n_{\rm i} u_0^2 f_{\rm p} / \Phi_0$ direct sum of the $f_{\rm p}$

C.J. van der Beek et al., PRL **105**, 267002 (2010) PRB **81**, 174517 (2010).

High field "weak collective pining" by charged defects

 $n_{\rm p}\xi^3 >> 1$ $j_c = F_p/B$ determined by $\langle f_{\rm p}^2 \rangle$

A.I. Larkin and Yu. Ovchinnikov, JETP **31**, 784 (1970); J. Low. Temp. Phys. **34**, 409 (1979)

Exception: isovalently substituted Ba(FeAs_{1-x}P_x)₂ No signature of "weak collective pinning" regime

Controlled disorder: columnar defects

Heavy ion irradiation: columnar defects, strong enhancement of pinning attenuate or erase central peak => field independent J_c

Controlled disorder

Heavy ion irradiation: columnar defects, strong enhancement of pinning attenuate or erase central peak => field independent J_c

Controlled disorder: columnar defects

Columnar defects: Proof from anisotropy of pining But small diameter and unstable (annealing at room temperature)

Pronounced flux creep: $\approx 5\%$ time decade with U(J) $\approx (J_c/J)^{\mu}$. Persist after irradiation with change of regime from μ =0.5-1 in pristine samples (vortex loop nucleation) μ =0.3 in ion irradiated irradiated samples (variable range hopping)

Columnar defects: IRL & T_c

Heavy ion irradiation: enhancement of pinning without depression of T_c Isovalently substituted Ba(FeAs_{1-x}P_x)₂: no measurable change of IRL, other compounds slight upward shift of IRL

$Ba(FeAs_{1-x}P_x)_2 \& Ba(Fe_{1-x}Ru_xAs)_2$ point disorder

Strong depression of T_c By point like disorder Linear with irradiation dose Down to <50% of initial T_c

Faster than in HTC cuprates

Strong depression in all compounds except FeSeTe

Ba(Fe_{1-x}Ru_xAs)₂ resistivity point disorder

$Ba(FeAs_{1-x}P_x)_2$ point disorder

Determination of scattering rate from resistivity:

problem: semi metallic two band conductivity

Hall coefficient does not reflect carrier concentration.

Need high magnetic field to separate hole and electron contribution.

Change in $R_h(T)$ variation after irradiation indicate charge redistribution.

Introducing point defects

CONCLUSIONS

Distinct effects of different types of disorder on pinning and paibraking

- Large defects (columnar) : interband scattering little effect on Tc
- Point defects: intraband scattering: strong pairbraking effect.
- Suppression of nodes in superconducting gap by disorder incompatible with symmetry induced nodes (d-wave)
- Evolution of gap structure with disorder compatible with S+/- coupling