

ABSENCE OF CDW AND POSSIBLE ELECTRONIC INSTABILITY IN 2D VS $_2$

Andrea Gauzzi

Institut de Minéralogie et de Physique des Milieux Condensés UPMC – Sorbonne Universités and CNRS, Paris

GDR-MICO, Roscoff, 7-10 January 2013

COLLABORATORS

- A. Sellam, G. Rousse, Y. Klein, P. Giura, D. Taverna, M. Calandra, G. Loupias IMPMC, Paris
- F. Gozzo, SLS, Villigen
- E.Gilioli, F. Bolzoni, G.L. Calestani, Parme
- P. Roy, AILES-SOLEIL
- D. Pelloquin, Caen

ACKNOWLEDGMENTS

E. Tosatti, H. Takagi, R. Lobo, B. Leridon

OUTLINE

- Introduction and motivation
 - Dichalcogenides 2D MX₂: CDW-SC interplay
- 1T-VS₂: little studied
 - Metastability
 - Previous studies: evidence of CDW and metallic properties
- Structural and physical properties of 1T-VS₂
 - High-pressure synthesis
 - Discrepancies with previous works: absence of CDW
 - Hint of electronic instability
- Conclusions and perspectives

SEARCH FOR EXCITONIC SUPERCONDUCTIVITY

Pioonering works:

- 1. W.A. Little, Phys. Rev. 134, A1416 (1964).
- 2. V. Ginzburg, Sov. Phys. JETP 20, 1549 (1965).

Conventional BCS: Excitonic BCS:
exchange of virtual phonon exchange of virtual photon
Favourable condition: weakly screened 2D semi-metals
★ 2D MX₂ (X=S, Se) compounds are good candidates

INTERPLAY BETWEEN SC-CDW IN 2D MX_2 SYSTEM

• Which microscopic mechanism(s) for SC and CDW?

Controversial scenarios:

- 1. Fermi surface nesting (Peierls mechanism)
- 2. Exciton condensate
- 3. Electron-phonon coupling
- 4. RVB mechanism (see also cuprates)

POLYTYPES AND STABILITY OF MS₂ COMPOUNDS

- 1T and 2H main polytypes
- 1T and 2H: similar total energy but different electronic structures
- **1T-VS₂:** hitherto reported only by deintercalation of Li in LiVS₂ (Murphy et al., 1977) d⁰ d¹ d²

- IT stable
- 2H stable
- 1T-VS₂: metastable
- CrS₂: not reported yet

ELECTRONIC STRUCTURE OF 1T-MS₂ COMPOUNDS SEMIMETALLIC CHARACTER

A. Gauzzi, GDR-MICO, Roscoff, 7-10 January 2013

PREVIOUS WORK: OBSERVATION OF CDW IN VS₂

- 3d¹ configuration of V ion confirmed by RPES
- Incommensurate CDW below $T_{\rm CDW}$ =305 K
- Fermi nesting scenario ruled out
- Phonon softening scenario with fairly large λ =0.45
- Metallic behaviour with $\rho_{\text{300K}}\text{--}1m\Omega\text{cm}$

MULTI-ANVIL HIGH-PRESSURE SYNTHESIS OF VS₂

pressure distribution plate

- Very high quasi-hydrostatic P up to 25 GPa
- Synthesis of 1T-VS₂:
 - *P* = 4 GPa
 - *T* = 700 °C
- Sintered powder samples > 95% pure
- "Large" samples V~100 mm³

STRUCTURAL REFINEMENT OF 1T-VS₂

★ HP synthesis leads to ~1% changes of lattice parameters

ABSENCE OF CDW AND SEMIMETALLIC PROPERTIES OF 1T-VS₂ SYNTHESISED UNDER HIGH PRESSURE

Discrepancies with Li de-intercalated samples:

- ★ No CDW at any temperature
- ★ Semimetallic behaviour of $\rho(T)$ and IR optical conductivity $\sigma_{\omega}(T)$

POSSIBLE EXPLANATION OF DISCREPANCY

Li de-intercalated $\text{Li}_{x}\text{VS}_{2}$ samples contains residual Li? **Hint:** observation of orbital ordering (Valence Bond Solid at T_{c} =305 K in LiVS₂ leading to V trimerisation.

A. Gauzzi, GDR-MICO, Roscoff, 7-10 January 2013

1T-VS₂: MAGNETIC RESPONSE

like to vanishing ϑ and larger $1/T_2$

A. Gauzzi, GDR-MICO, Roscoff, 7-10 January 2013

0.00

50

100

150

Temperature [K]

200

250

300

EVIDENCE OF STRUCTURAL ANOMALY IN 1T-VS₂

- Negative thermal expansion of c-axis in the 50-150 K range (~4 pm increase with respect to extrapolated Debye behaviour)
- Negative thermal expansion of V-S bond distance below 100 K (~8 pm increase)
- **★** Electronic instability (charge fluctuation?) of V^{4+} ion?

CONCLUSIONS

- Successful HP synthesis of pure 1T-VS₂ powders
- Absence of CDW (discrepancy with Li de-intercalated samples)
- Further discrepancy concerns semimetallic behaviour
- 1T-VS₂ is a non-magnetic semi-metal
- Crossover of magnetic response below ~100 K (likely enhanced spin-spin relaxation rate)
- Crossover concomitant to negative *c*-axis thermal expansion (increase of V-V distance below ~100 K)

PERSPECTIVES AND FUTURE WORK

- High-pressure growth of single-crystals
- EPR study to probe the *T*-dependent localised moments
- Link between magnetic crossover and structural anomaly
- Is 1T-VS₂ far from a superconducting instability?