

Réunion du GdR "Matériaux et Interactions en Compétition", Roscoff – 7-10 Janvier 2013

Champs Magnétiques Pulsés et Diffusion des rayons X et des neutrons

LNCMI-Toulouse

Fabienne Duc

Grenoble

Collaborators

 LNCMI, Toulouse, France
 J. Béard, J. Billette, X. Fabrèges, P. Frings, W. Knafo, M. Nardone, J. P. Nicolin, A. Zitouni B. Vignolle, G. Rikken
 X-ray experiments
 ESRF, Grenoble, France
 C. Detlefs, T. Roth, L. Paolasini, W. Crichton (I.

C. Detlefs, T. Roth, L. Paolasini, W. Crichton (ID06) P. Van der Linden (ESRF) C. Strohm, O. Mathon, S. Pascarelli (ID24)

Neutron experiments

- Institute for Material Research Tohoku University, Japan
- Ibaraki University, Japan
- Japan Atomic Energy Agency (JAEA, Tokai), Japan
- INAC/SPSMS/MDN, CEA-Grenoble
- Institut Laue Langevin, Grenoble
- Institut Néel, Grenoble, France

H. Nojiri, S. Yoshii, K. Ohoyama

K. Kuwahara

M. Matsuda

L. P. Regnault (CRG IN22@ ILL) D. Aoki, F. Bourdarot, J. Flouquet

E. Lelièvre-Berna, B. Rollet, X. Tonon

J.E. Lorenzo

Outline

- Introduction Motivations
- High pulsed magnetic field
- X-ray diffraction in pulsed fields
 - Pulsed magnet with conical bore for powder diffraction
 - Split-pair magnet for single crystal diffraction
 - Perspectives

Neutron diffraction in pulsed fields

- Neutron experimental configuration
- Application to the frustrated spinel CdCr₂O₄
- Metamagnetic transition in 4%Rh-URu₂Si₂
- Perspectives

Motivations: why ? Outline of scientific cases

Quantum magnetism

- magnetization plateaus
- quantum critical points

High T_c

- low temperature normal state studies
- competing phases in the cuprates

Magnetic oxides

- charge and orbital ordering
- structural transitions

Heavy fermions

- metamagnetic transitions (URu₂Si₂...)

Multiferroics

- magnetically driven charge displacements

and lots more!!!

Synchrotron and neutron radiation are powerful and universal tools to determine magnetic and structural properties as well as dynamic modes of condensed matter

The combination of synchrotron and neutron radiation with high magnetic fields open many new research opportunities.

Pulsed magnetic fields

+

Advantages

Scalable

Trade-off between pulse length and energy/size of installation

- Well-known technology
- Quite easy (and cheap) to reach 30 T technology for 60 T is mature
- Trade-off between max. field and duty cycle/repeat frequency

• Duty cycle:

- 1 msec every 10 sec
- 30 msec every 5 min...
- Eddy currents \Rightarrow heating
- Vibrations induced by magnetic forces

• pulse

State of the art

Synchrotron pulsed field devices developed across the world during the last 8 years:

Japan: Spring-8	 Nojiri et al. (IMR, Tohoku University, Sendai) Miniature coil, 40 T (~ 7-8 ms), single crystal diffraction, X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD)
	 Katsumata, Kindo and Narumi et al. (ISSP, Tokyo University, Japan) Split-pair coil, 40 T (~ 27 ms), single crystal diffraction
USA: APS	 Collaboration Z. Islam and Nojiri et al. Split-pair and solenoid minicoil, 30 T (~ 7-8 ms) Powder and single crystal diffraction
France: ESRF	 Collaboration between LNCMI, ESRF, Institut Néel and INPAC (Leuven) Classical solenoid coil, 30 T (~ 30-100 ms), powder diffraction, XAS, XMCD Coil with conical bore, 30 T (~ 30-100 ms), powder diffraction Split-pair coil, 30 T , (~ 60 ms), single crystal diffraction + ESRF dedicated beamline (ID06) C. Detlefs, T. Roth
	 ESRF, P. Van der Linden, O. Mathon, C. Strohm

Miniature coil, 30 T (~ 1 ms), XAS, XMCD, nuclear forward scattering

State of the art

Neutron pulsed field devices developed across the world during the last 8 years:

Japan: JAEA	 Nojiri et al. Miniature coil, 30 T (~ 1 to 10 ms), single crystal diffraction 		
J-PARC	 Nojiri et al. Miniature coil, 50 T (~ 1 to 10 ms), single crystal diffraction 		
England: ISIS	 Collaboration with Nojiri et al. 		
USA: SNS, Oak Ridge	 Collaboration with Nojiri et al. 		
France: ILL	 Collaboration between Nojiri el al. (IMR), LNCMI-T and CEA-SPSMS Miniature coil, 30 T (~ 7-8 ms), single crystal diffraction 		
	 ANR project: Dec. 2010- Dec 2014 Collaboration between LNCMI-T, CEA-SPSMS, ILL and Inst. Néel Coil with conical bore, 40 T (~100 ms), single crystal diffraction 		

Neutron DC fields projects under development

Germany: HZB, Berlin • Collaboration with NHMFL (Florida, USA) Hybrid magnet, 25 T, elastic and inelastic scattering

Mobile power supplies (LNCMI-T)

- 2 storage units + 1 charger/control unit
- 2 polarities
- Charging and commutation in only few min (< 3 min)


```
and will be available in 2 x 3 MJ in 2013
```


X-ray diffraction in pulsed fields Collaboration: LNCMI-Toulouse, ESRF-Grenoble

30 T magnet with conical bore on ID20@ESRF

LNCMI capacitor bank on ID06@ESRF 4 mF, 24 kV, 1.15 MJ, 11 m³, 5 t 30 T split pair magnet on ID06@ESRF

- Magnets and cryostats: LNCMI-Toulouse
- Pulsed field generator: LNCMI-Toulouse
- Synchrotron beamlines: BM26, ID20, ID06 @ ESRF

30 T pulsed magnet and cryogenics for X-ray powder diffraction

- Maximum field
- Pulse duration (total)
- Repetition rate at B_{max}
- Geometry
- Sample diameter
- Sample temperature

• Powder embedded in a polymer matrix to suppress grain movement to improve thermal contact

Billette et al., Rev. Sci. Instrum. 83, 043904 (2012)

High field X-ray powder diffraction on ID20 (ESRF)

Data acquisition with image plate detector

Image plate detector (MAR 345)

- Exposed by opening a fast shutter near maximum magnetic field, integrating ca. 2-5 ms
- Simple, robust exp.
- Timing with fixed delays
- One (average) field/spectrum

Data acquisition with image plate detector

Image plate detector (MAR 345)

- Exposed by opening a fast shutter near maximum magnetic field, integrating ca. 2-5 ms
- Simple, robust exp.
- Timing with fixed delays
- One (average) field/spectrum

High magnetic field X-ray powder diffraction

25 $Ca_{0.8}(Sm,Nd)_{0.2}MnO_{3}, T = 7 K$ (202) Exposure time: 3.4 ms (040) Intensity (/shot) (202)___ 20 (040)__ B = 0 T $B = 4.8 \pm 0.3 \text{ T}$ 15 $B = 9.6 \pm 0.7 T$ $B = 14.3 \pm 1 T$ (-202)_ B = 19.1 ± 1.3 T 10 B = 23.9 ± 1.7 T $B = 28.7 \pm 2 T$ 5 18.0 18.4 18.8 17.6 20 (deg) 10 Cu₂Cl(OH)₃ Pnma, $R_{Bragg} = 0.06$ T = 7 K, B = 28 ± 2 T 8 Intensity (arb. u.) \Rightarrow Rietveld analysis possible 6 \Rightarrow cell parameters + internal parameters 2 0 1011 10 11 12 13 14 15 8 9 3 4 5 6 2θ (deg)

Billette et al., Rev. Sci. Instrum. 83, 043904 (2012)

Duc et al., Phys. Rev. B 82, 054105 (2010)

- \Rightarrow Field induced structural transition
- \Rightarrow Group-subgroup transition
- \Rightarrow Magnetostriction

30 T split-pair magnet for single-crystal X-ray diffraction

High field single-crystal diffraction on ID06@ESRF

- Single crystal diffraction in monochromatic beam
 Highest resolution
 - Strongest absolute signal
 - Best signal/noise ratio
- ID06: angular resolution > 10^{-3} deg

Eddy currents in AI parts of the diffractometer Goniometer plate (diam. 1m) F = 9.6 kN Repulsive induced forces in coil and diffractometer Translation stages AI **Rotation stages**

Eddy currents in AI parts of the diffractometer Goniometer plate (diam. 1m) F = 9.6 kN

Repulsive induced forces in coil and diffractometer

Eddy currents in AI parts of the diffractometer Goniometer plate (diam. 1m) F = 9.6 kN

Repulsive induced forces in coil and diffractometer

Si(400), FWHM(θ) ~ 0.004°

 \Rightarrow Up to ~ 30 ms, sample rotation < 6.10⁻⁴ deg at 30 T

Vibration sensitivity

 \Rightarrow High stability of sample is achieved up to 20 ms

Perspectives for high field X-ray scattering

• Time-resolved detector for X-ray single crystal diffraction on ID06

MAXIPIX high frame rate pixel detector

(developed for time-resolved, noiseless and high spatial resolution X-ray detector)

 \Rightarrow Magneto-structural behavior of frustrated spinel systems

New developments

30 T magnet with conical bore will be modified to allow single crystal diffraction

⇒ Single crystal diffraction measurements in backscattering geometry

 \Rightarrow Charge fluctuations in high T_c cuprates

Perspectives: XAS and XMCD on a dispersive XAS beamline ID24 @ ESRF

Collaboration: P. van der Linden, C. Strohm

 Solenoid coil: LNCMI Toulouse • cryostat: P. van der Linden (ESRF) 1.5 K in dia. 9 mm (-) **30 T** in dia. 16 mm @ 77 K (•) • Pulse duration (total) 23 ms 'top – loading' 6 pulses/hour Repetition rate at B_{max} *B* // incident beam Geometry • 1.5 K to 300 K 30 (L) 20 L) 10 Coil - William 0 20 30 10 0 time (ms)

Perspectives: XAS and XMCD on a dispersive XAS beamline ID24 @ ESRF

Collaboration: P. van der Linden, C. Strohm

Perspectives: Development of a new end-station for soft X-ray magnetic dichroism experiments SIM beamline, SLS

Collaboration: IPCMS-Strasbourg, SLS Villigen, SOLEIL, LNCMI-T, IMPMC-Paris

Solenoid coil: LNCMI Toulouse

• cryostat: IPCMS-Strasbourg

- **30 T** in dia. 16 mm @ 77 K (✓)
- Pulsed field generator: LNCMI Toulouse

• 10 K

 \Rightarrow Study of the first-order field-induced transition from paramagnetic to ferromagnetic state in the $Co(S_{1-x}Se_x)_2$ pseudobinary compounds, by recording and modeling the $Co-L_{2,3}$ edges as a function of magnetic field.

Neutron diffraction in pulsed fields on IN22 spectrometer (CEA-CRG @ ILL, Grenoble)

Collaboration: IMR/Sendai, INAC/CEA-Grenoble, LNCMI-Toulouse

- Magnet and cryostat insert: IMR/Sendai
- Pulsed field generator: LNCMI-Toulouse
- Neutron spectrometer: CEA-CRG @ ILL

Magnet coil and cryostat insert (IMR, Japan)

Magnet coil and cryostat insert (IMR, Japan)

time (s)

Data acquisition scheme

• Accumulation of 100-200 pulses/Bragg reflection (12-24H)

Yoshii et al., Phys. Rev. Lett. 103, 077203 (2009)

Application to the frustrated spinel CdCr₂O₄

- \Rightarrow geometrically frustrated system
- Magnetic Cr^{3+} (S = 3/2)
- AF interactions: Curie-Weiss θ_{CW} = -88 K

Spinel $CdCr_2O_4$

No orbital degree of freedom No spin-orbit coupling

Application to the frustrated spinel CdCr₂O₄

\Rightarrow geometrically frustrated system

- Magnetic Cr^{3+} (S = 3/2)
- AF interactions: Curie-Weiss θ_{CW} = -88 K

$T_N = T_s = 7.8 \text{ K}$

• Transition to a noncollinear AF state

Ueda et al., Phys. Rev. Lett. 94, 047202 (2005)

Ueda et al., Phys. Rev. Lett. 94, 047202 (2005)

Application to the frustrated spinel CdCr₂O₄

\Rightarrow geometrically frustrated system

- Magnetic Cr³⁺ (S = 3/2)
- AF interactions: Curie-Weiss θ_{CW} = -88 K

$T_N = T_s = 7.8 \text{ K}$

• Transition to a noncollinear AF state Ueda *et al.*, Phys. Rev. Lett. **94**, 047202 (2005)

Zero field magnetic structure = incommensurate helical spin structure Chung *et al.*, Phys. Rev. Lett. **95**, 247204 (2005)
Structural transition cubic *Fd* -3*m* ⇒ tetragonal *I*4₁/*amd* with c > a = b

Chung *et al.*, Phys. Rev. Lett. **95**, 247204 (2005)

Magnetic structure of the half-magnetization plateau phase

T = 2.5 K, sample mass 40 mg

- \Rightarrow Incommensurate-commensurate transition observed
- \Rightarrow High field magnetic structure established

Magnetic structure of the half-magnetization plateau phase

2 possible spin orders

Extinctions rules are different
 (1,-1,0), (2,1,0), (111) only observed in P4₃32 (1,-1,0), (2,1,0) purely magnetic small nuclear contribution to (111)

• Magnetic scattering on (2,-2,0) only observed in *R-3m* (nuclear contribution to (2,2,0))

Ueda et al., Phys. Rev. Lett. 94, 047202 (2005)

Metamagnetic transition in URu₂Si₂

Kim et al., Phys. Rev. Lett. 91, 256401 (2003)

Magnetic structure of the half-magnetization phase in the frustrated spinel CdCr₂O₄

H_{c1} = 28 T

- 1^{rst} order isotropic transition
- Half-magnetization plateau phase
- \Rightarrow Ferrimagnetic phase uuud realized

• Large lattice distortions: $\Delta L/L = -4x10^{-4}$

 \Rightarrow Strong spin-lattice couplings

 \Rightarrow Half-magnetization plateau phase stabilized by lattice distortion

4%Rh-URu₂Si₂ sample (CEA-Grenoble)

Kim et al., Phys. Rev. Lett. 93, 206402 (2004)

AF (100) and uud along c-axis

- \Rightarrow No intensity beyond the BG
- \Rightarrow AF (100) order not observed

 \Rightarrow (1, 0,-1/3) = no intensity beyond the BG

 \Rightarrow uud spin modulation is not along *c*-axis

In plane uud modulation

Sugiyama et al., J. Phys. Soc. Jpn. 59, 3331 (1990)

 \Rightarrow (2/3, 0, 0) = wave vector of phase II

Perspectives: 2%Rh-URu₂Si₂ and pure sample Collaboration: IMR/Sendai, INAC/CEA-Grenoble, LNCMI-Toulouse

Yokoyama et al., J. Phys. Soc. Jpn. 76, 136 (2007)

Collaboration: LNCMI, INAC/CEA, ILL, Institut Néel ANR financial support: Dec. 2010- Dec.2014

40 T long pulse rapid cooling magnet

 Maximum field 	40 T (ΔB <2%)	 Geometry 	conical
 Pulse duration (total) 	100 ms		B // incident beam
 Cool down time 	7 min	 Sample volume 	~ 0.15-0.2 cm ³
Duty cycle	2.4 .10-4	 Opening angle 	± 15(in), ± 30(out)

Collaboration: LNCMI, INAC/CEA, ILL, Institut Néel ANR financial support: Dec. 2010- Dec.2014

40 T long pulse rapid cooling magnet

- Maximum field
- Pulse duration (total)
- Cool down time
- Duty cycle

40 T (ΔB <2%) 100 ms 7 min 2.4 .10⁻⁴

- Geometry
- Sample volume
- Opening angle
- conical *B* // incident beam ~ 0.15-0.2 cm³ ± 15°(in), ± 30°(out)

Collaboration: LNCMI, INAC/CEA, ILL, Institut Néel ANR financial support: Dec. 2010- Dec.2014

- Duty-cycle improvement
 - Increase the pulse duration (~ 100 ms)
 - Optimization of neutron equipment: maximize the number of neutrons detected/pulse
 - Efficient focusing neutron optics
 - New fast and high counting rate detector
- Cryogenic environment
 - Coil in LN₂ bath
 - > ⁴He bath to cool the sample
 - > Heat exchanger in vacuum, inside the cone
 - > Sample temperature: 1.5-2 K

Powerful tool to investigate high magnetic field induced phases

- strongly correlated electron systems and quantum magnets:
 - competing phases in cuprates heavy fermions frustrated systems Haldane chains...

Merci !

Onizuka et al., J. Phys. Soc. Jpn. 69, 1016 (2000)