

Réunion du GdR "Matériaux et Interactions en Compétition", Roscoff – 7-10 Janvier 2013

Champs Magnétiques Pulsés et Diffusion des rayons X et des neutrons

LNCMI-Toulouse

Fabienne Duc

Grenoble

Collaborators

LNCMI, Toulouse, France J. Béard, J. Billette, X. Fabrèges, P. Frings, W. Knafo, M. Nardone, J. P. Nicolin, A. ZitouniB. Vignolle, G. Rikken

C. Detlefs, T. Roth, L. Paolasini, W. Crichton (ID06) P. Van der Linden (ESRF)C. Strohm, O. Mathon, S. Pascarelli (ID24)

Neutron experiments

ESRF, Grenoble, France

X-ray experiments

- \triangleright Institute for Material Research Tohoku University, Japan
- > Ibaraki University, Japan K. Kuwahara
- > Japan Atomic Energy Agency M. Matsuda
(JAFA Teksi) Japan (JAEA, Tokai), Japan
-
- > Institut Laue Langevin, Grenoble
- Institut Néel, Grenoble, France J.E. Lorenzo

H. Nojiri, S. Yoshii, K. Ohoyama

 INAC/SPSMS/MDN, CEA-Grenoble L. P. Regnault (CRG IN22@ ILL) D. Aoki, F. Bourdarot, J. Flouquet

E. Lelièvre-Berna, B. Rollet, X. Tonon

Outline

- **Introduction - Motivations**
- **High pulsed magnetic field**
- **X-ray diffraction in pulsed fields**
	- Pulsed magnet with conical bore for powder diffraction
	- Split-pair magnet for single crystal diffraction
	- Perspectives

Neutron diffraction in pulsed fields

- Neutron experimental configuration
- Application to the frustrated spinel CdCr $_{\rm 2} \rm O_4$
- Metamagnetic transition in 4%Rh-URu $_2$ Si $_2$
- Perspectives

Motivations: why ? Outline of scientific cases

Quantum magnetism

- magnetization plateaus
- quantum critical points

High $\mathsf{T}_{\operatorname{c}}$

- low temperature normal state studies
- competing phases in the cuprates

Magnetic oxides

- charge and orbital ordering
- structural transitions

Heavy fermions

- metamagnetic transitions (URu₂Si₂…)

Multiferroics

- magnetically driven charge displacements

and lots more!!!

Synchrotron and neutron radiation are powerful and universal tools to determine magnetic and structural properties as well as dynamic modes of condensed matter

The combination of synchrotron and neutron radiation with high magnetic fields open many new research opportunities.

Pulsed magnetic fields

+-

Advantages

• Scalable

Trade-off between pulse lengthand energy/size of installation

- Well-known technology
- Quite easy (and cheap) to reach 30 Ttechnology for 60 T is mature
- Trade-off between max. field and duty cycle/repeat frequency

• Duty cycle:

- 1 msec every 10 sec
- 30 msec every 5 min…
- Eddy currents [⇒] heating
- Vibrations induced by magnetic forces

State of the art

Synchrotron pulsed field devices developed across the world during the last 8 years:

State of the art

Neutron pulsed field devices developed across the world during the last 8 years:

Neutron DC fields projects under development

Germany: HZB, Berlin • Collaboration with NHMFL (Florida, USA) Hybrid magnet, 25 T, elastic and inelastic scattering

Mobile power supplies (LNCMI-T)

- 2 storage units + 1 charger/control unit
- 2 polarities
- Charging and commutation in only few min (< 3 min)


```
and will be available in 2 x 3 MJ in 2013
```


X-ray diffraction in pulsed fieldsCollaboration: LNCMI-Toulouse, ESRF-Grenoble

30 T magnet with conical bore on ID20@ESRF

LNCMI capacitor bankon ID06@ESRF

4 mF, 24 kV, 1.15 MJ, 11 m^3 , 5 t

30 T split pair magnet on ID06@ESRF

- Magnets and cryostats: LNCMI-Toulouse
- Pulsed field generator: LNCMI-Toulouse
- Synchrotron beamlines: BM26, ID20, ID06 @ ESRF

30 T pulsed magnet and cryogenics for X-ray powder diffraction

- Maximum field
- Pulse duration (total) **23 ms**
- \bullet Repetition rate at B $_{\sf max}$
- Geometry
- Sample diameter 4 mm
- Sample temperature

30 T

• Powder embedded in a polymer matrix to suppress grain movementto improve thermal contact

Billette *et al*., Rev. Sci. Instrum. 83, 043904 (2012)

High field X-ray powder diffraction on ID20 (ESRF)

Data acquisition with image plate detector

Image plate detector (MAR 345)

- Exposed by opening a fast shutter near maximum magnetic field, integrating ca. 2-5 ms
- Simple, robust exp.
- Timing with fixed delays
- One (average) field/spectrum

Data acquisition with image plate detector

Image plate detector (MAR 345)

- Exposed by opening a fast shutter near maximum magnetic field, integrating ca. 2-5 ms
- Simple, robust exp.
- Timing with fixed delays
- One (average) field/spectrum

High magnetic field X-ray powder diffraction

Duc et al., Phys. Rev. B 82, 054105 (2010)

- ⇒ **Field induced structural transition**
- ⇒ **Group-subgroup transition**
- ⇒ **Magnetostriction**

30 T split-pair magnet for single-crystal X-ray diffraction

High field single-crystal diffraction on ID06@ESRF

- Single crystal diffraction in monochromatic beamHighest resolution
	- Strongest absolute signal
	- Best signal/noise ratio
- ID06: angular resolution > 10⁻³ deg

Vibration sensitivity

Translation stagesRotation stagesEddy currents in Al parts of the diffractometerGoniometer plate (diam. 1m) $F = 9.6$ kN Repulsive induced forces in coil and diffractometerAl

Vibration sensitivity

Eddy currents in Al parts of the diffractometerGoniometer plate (diam. 1m) $F = 9.6$ kN

Repulsive induced forces in coil and diffractometer

Vibration sensitivity

Eddy currents in Al parts of the diffractometerGoniometer plate (diam. 1m) $F = 9.6$ kN

Repulsive induced forces in coil and diffractometer

Vibration sensitivity

Si(400), FWHM(θ) ~ 0.004°

⇒ **Up to ~ 30 ms, sample rotation < 6.10-4 deg at 30 T**

Vibration sensitivity

⇒ **High stability of sample is achieved up to 20 ms**

Perspectives for high field X-ray scattering

• **Time-resolved detector for X-ray single crystal diffraction on ID06**

MAXIPIX high frame rate pixel detector

(developed for time-resolved, noiseless and high spatial resolution X-ray detector)

 \Rightarrow Magneto-structural behavior of frustrated spinel systems

• **New developments**

30 T magnet with conical bore will be modified **to allow single crystal diffraction**

⇒ **Single crystal diffraction measurements in backscattering geometry**

 \Rightarrow Charge fluctuations in high T_{c} cuprates

Perspectives: XAS and XMCD on a dispersive XAS beamlineID24 @ ESRF

Collaboration: P. van der Linden, C. Strohm

Perspectives: XAS and XMCD on a dispersive XAS beamlineID24 @ ESRF

Collaboration: P. van der Linden, C. Strohm

Perspectives: Development of a new end-station for soft X-ray magnetic dichroism experiments SIM beamline, SLS

Collaboration: IPCMS-Strasbourg, SLS Villigen, SOLEIL, LNCMI-T, IMPMC-Paris

• Solenoid coil: LNCMI Toulouse

• cryostat: IPCMS-Strasbourg

- **30 T** in dia. 16 mm @ 77 K (\checkmark)
- Pulsed field generator: LNCMI Toulouse

• 10 K

⇒ Study of the first-order field-induced transition from paramagnetic to ferromagnetic state in the
Co(S. Se), pseudobinary compounds, by recording and modeling the Co-L., edges as a function of Co(S $_{1\cdot x}$ Se $_{\chi_{2}}$ pseudobinary compounds, by recording and modeling the Co-L $_{2,3}$ edges as a function of magnetic field.

Neutron diffraction in pulsed fields on IN22 spectrometer (CEA-CRG @ ILL, Grenoble)

Collaboration: IMR/Sendai, INAC/CEA-Grenoble, LNCMI-Toulouse

- Magnet and cryostat insert: IMR/Sendai
- Pulsed field generator: LNCMI-Toulouse
- Neutron spectrometer: CEA-CRG @ ILL

Magnet coil and cryostat insert (IMR, Japan)

Magnet coil and cryostat insert (IMR, Japan)

 $time(s)$

Data acquisition scheme

• Accumulation of 100-200 pulses/Bragg reflection (12-24H)

Yoshii et al., Phys. Rev. Lett. 103, 077203 (2009)

Application to the frustrated spinel $\mathsf{CdCr}_2\mathsf{O}_4$

- ⇒ **geometrically frustrated system**
- Magnetic Cr³⁺ (S = 3/2)
- \bullet AF interactions: Curie-Weiss $\rm\,\theta_{\rm CW}$ = -88 K

Spinel Cd $\rm Cr_2O_4$

No orbital degree of freedom No spin-orbit coupling

Application to the frustrated spinel $CdCr_2O_4$

⇒ **geometrically frustrated system**

- Magnetic Cr³⁺ (S = 3/2)
- AF interactions: Curie-Weiss $\,\theta_{\rm CW}$ = -88 K

T_{N} = T_{s} = 7.8 K

• Transition to a noncollinear AF state

Ueda et al., Phys. Rev. Lett. **94**, 047202 (2005)

Ueda et al., Phys. Rev. Lett. 94, 047202 (2005)

Application to the frustrated spinel $CdCr₂O₄$

⇒ **geometrically frustrated system**

- Magnetic Cr³⁺ (S = 3/2)
- AF interactions: Curie-Weiss $\,\theta_{\rm CW}$ = -88 K

T_{N} = T_{s} = 7.8 K

• Transition to a noncollinear AF stateUeda et al., Phys. Rev. Lett. **94**, 047202 (2005)

 \bullet Zero field magnetic structure = incommensurate helical spin structure Chung et al., Phys. Rev. Lett. **95**, 247204 (2005)• Structural transition cubic *Fd* -3*m* \Rightarrow tetragonal *I*4₁/amd with $c > a = b$

Chung et al., Phys. Rev. Lett. **95**, 247204 (2005)

Chung et al., Phys. Rev. Lett. 95, 247204 (2005)

Magnetic structure of the half-magnetization plateau phase

T = 2.5 K, sample mass 40 mg

- ⇒ **Incommensurate-commensurate transition observed**
- ⇒ **High field magnetic structure established**

Magnetic structure of the half-magnetization plateau phase

2 possible spin orders

 • (1,-1,0), (2,1,0), (111) only observed in **P43³² (1,-1,0)**, (2,1,0) purely magnetic small nuclear contribution to (111)

• Magnetic scattering on **(2,-2,0)** only observed in **R-3m** (nuclear contribution to (2,2,0))

Ueda et al., Phys. Rev. Lett. 94, 047202 (2005)

Metamagnetic transition in URu $_2$ Si $_2$

Kim et al., Phys. Rev. Lett. 91, 256401 (2003)

Magnetic structure of the half-magnetization phase in the frustrated spinel $\mathsf{CdCr}_2\mathsf{O}_4$

 H_{c1} = 28 T

- \bullet 1 $^{\sf{rst}}$ order isotropic transition
- Half-magnetization plateau phase
- \Rightarrow Ferrimagnetic phase uuud realized

• Large lattice distortions: ∆L/L = -4x10-4

⇒ **Strong spin-lattice couplings** ⇒ **Half-magnetization plateau phase stabilized by lattice distortion**

4%Rh-URu $_{\rm 2}$ Si $_{\rm 2}$ sample (CEA-Grenoble)

Kim et al., Phys. Rev. Lett. 93, 206402 (2004)

AF (100) and uud along *c*-axis

- ⇒ **No intensity beyond the BG**
- ⇒ **AF (100) order not observed**

⇒ **(1, 0,-1/3) = no intensity beyond the BG**

⇒ **uud spin modulation is not along c-axis**

In plane uud modulation

Sugiyama et al., J. Phys. Soc. Jpn. 59, 3331 (1990)

⇒ **(2/3, 0, 0) = wave vector of phase II**

Perspectives: 2%Rh-URu $_{\rm 2}$ Si $_{\rm 2}$ and pure sample Collaboration: IMR/Sendai, INAC/CEA-Grenoble, LNCMI-Toulouse

Yokoyama et al., J. Phys. Soc. Jpn. 76, 136 (2007)

Collaboration: LNCMI, INAC/CEA, ILL, Institut Néel ANR financial support: Dec. 2010- Dec.2014

40 T long pulse rapid cooling magnet

Collaboration: LNCMI, INAC/CEA, ILL, Institut Néel ANR financial support: Dec. 2010- Dec.2014

40 T long pulse rapid cooling magnet

- Maximum field
- Pulse duration (total) **100 ms**
- Cool down time
- Duty cycle
- **40 T (∆B <2%) 7 min2.4 .10-4**
- Geometry
- Sample volume
- Opening angle
- **conical B // incident beam [~] 0.15-0.2 cm³** \pm 15 γ in), \pm 30 γ out)

Collaboration: LNCMI, INAC/CEA, ILL, Institut Néel ANR financial support: Dec. 2010- Dec.2014

- Duty-cycle improvement
	- Increase the pulse duration (\sim 100 ms)
	- > Optimization of neutron equipment: maximize the number of neutrons detected/pulse
	- Efficient focusing neutron optics
	- New fast and high counting rate detector
- Cryogenic environment
	- \triangleright Coil in LN₂ bath
	- \geq ⁴He bath to cool the sample
	- ▶ Heat exchanger in vacuum, inside the cone
	- Sample temperature: 1.5-2 K

Powerful tool to investigate high magnetic field induced phases

- strongly correlated electron systems and quantum magnets:
	- competing phases in cupratesheavy fermions frustrated systemsHaldane chains…

Merci !

Onizuka et al., J. Phys. Soc. Jpn. 69, 1016 (2000)