

Insulator to metal transitions and resistive switching in the chalcogenide Mott insulator compounds AM₄X₈

Benoît Corraze, Etienne Janod, Laurent Cario,

Benoit.corraze@cnrs-imn.fr

GDR MICO - Roscoff 2013

Mott Insulator

Bandwidth and filling control Insulator to Metal Transition

Exotic properties at the (Mott) insulator to metal

The Mott Insulator compounds AM₄X₈

Clustered lacunar spinel structure :

Bandwidth-controlled MIT in the AM₄X₈

GaTa₄Se₈ : canonical Mott Insulator to Metal Transition under pressure (+ superconductivity)

Filling-controlled MIT in the AM₄X₈ compounds ?

Insulator to Metal Transition in the FM Mott Insulators $Ga_{1-x}Ge_{x}V_{4}S_{8}$

Ga_{1-x}Ge_xV₄S₈ a Mott transition in a Ferromagnetic

Negative CMR in the ferromagnetic Ga_{1-x}Ge_xV₄S₈

Colossal MagnetoResistance in (n-doped) Ga₁₋

_xGe_xV₄S₈

E. Janod et al. Submitted 2012

Mott insulators and microelectronic applications : towards "Mottronics" ?

I-M transition under electric Field

Resistive Switching in the AM₄X₈

Resistive Switching in the AM₄X₈

AM₄X₈ : already known mechanism ?

New mecanism of resistive switching \neq other

Research Devices

Resistive switching in the AM₄X₈ compounds

GaTa₄Se₈ 77 K

Electric field controlled electronic phenomena

L. Cario, C. Vaju, B. Corraze, V. Guiot, E. Janod, Advanced Materials 22, 5193-5197 (2010)

Non linéarités électriques avec champ seuil

Selected Volume in electronics and systems Vol 36 World Scientific (2005

Non linéarités électriques dans les AM₄X₈ : comparaison avec les modèles existants

Transition résistive dans les isolants de Mott

Non-volatile resistive switching

Conclusion

Acknowledgments

From the functionality to the device : GaV_4S_8 thin films

Towards the non-volatile "Mott memories"

Etude des AM4X8 par microscope à effet tunnel Scanning tunnelling microscopy (STM)

Non-volatile resistive switching : electronic phase separation

STM study of GaTa₄Se₈

V. Dubost, F. Debrontrider, T. Cren, D. Roditchev

Institut des NanoSciences de Paris

electronic phase separation

C. Vaju, et al. advanced Materials 20, 2760 (2008)

Pulse application through the STM tip: electro-mechanical coupling

Gigantic electro-mechanical

V. Dubost et al. Advanter file (otal Materials 19, 2800-2804 (2009)

Thermal effect : chemical or structural change ?

✓ no chemical or structural change (< 10-1000 nm)</p>

Mechanism of negative CMR

E. Janod et al. Submitted 2012

Metal / Insulator / Metal (MIM) Structure

GaTa₄Se₄Te₄

GaTa₄Se₂Te₆

Guiot et al. Chem. Mat. 2011 23(10) 2611

Evolution du champ seuil avec le gap

Resistive Switching in the AM₄X₈

Lien champ seuil - gap

Forte évidence de la validité d'un phénomène d'avalanche dans des isolants de Mott à faible gap !!!

Negative CMR in the ferromagnetic Ga_{1-x}Ge_xV₄S₈

Colossal MagnetoResistance in (n-doped) Ga₁₋

E. Janod et al. Submitted 2012