

Symmetry adapted analysis of Bi_{1-x}Y_xCrO₃ perovskites

<u>Claire V. Colin</u>, Pierre Bordet, Céline Goujon, Céline Darie

Institut Néel, CNRS and University Joseph Fourier, Grenoble, France

www.neel.cnrs.fr GDR MICO – Roscoff – 7 au 10 janvier 2013

Role of Bi ? Structure - properties relationship ?

 \rightarrow Bi_{1-x}Y_xCrO₃ lone pair dilution

Мо

Steel

3

Calcite cell

Y³⁺ Cation isovalent of Bi³⁺, non magnetic (d⁰) and without lone pair

 $YCrO_3$: distorted perovskite centrosymmetric SG Pnma, weak ferromagnet, AFM G-type magnetic structure, T_N =140K

\rightarrow Symmetry analysis:

Magnetism: Representation analysis, Bertaut Calculation: Sarah and BasIreps

Structure: Symmetry-mode analysis Calculation: AMPLIMODES (Bilbao Crystallographic server) implemented in FullProf

Bi_{1-x}Y_xCrO₃: Crystal structure

Bi_{1-x}Y_xCrO₃: Magnetic properties

Neutron powder diffraction

D1B, ILL (x=0.01; 0.05; 1) λ=2.43Å G4.1, LLB

(x=0.5; 0.8; 1)

k=(0,0,0)

λ=2.52Å

Pnma samples (x>0.05): Magnetic structure

7

Mode crystallography of distorted structures

J. M. Perez-Mato,* D. Orobengoa and M. I. Aroyo

Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV-EHU), Apdo 644, 48080 Bilbao, Spain. Correspondence e-mail: jm.perez-mato@ehu.es

Acta Cryst. (2010). A66, 558-590

A distorted structure can be described as the parent crystalline structure plus a static symmetry-breaking structural distortion.

Modes are collective correlated atomic displacements fulfilling specific symmetry properties. Structural distortions in distorted structures can be decomposed into contributions from different modes with symmetries given by irreducible representations of the parent space group.

In general, the use of symmetry-adapted modes in the description of distorted structures introduces a natural physical hierarchy among the structural parameters.

Group-Subgroup relationship:

Distorted orthorombic perovskite

AMPLIMODES: YCrO₃

TABLE IV. Summary of mode decomposition of YCrO₃ compound with Pnma structure, indicating the amplitude (Å) of all intervening irrep distortion components at room temperature.

Non-distorted

Distortion modes

amplitude

Pnma samples (x>0.05) Symmetry adapted mode analysis

Implemented in fullprof: AMPLIMODES:

062 <--Space group symbol !Atom Typ Х Y Z Biso Occ In Fin N t Spc /Codes 0.00000 0.00000 0.00000 0.25005 0.50000 0 0 CR Cr1 $0.50000 \ 0.25000 \ 0.00000 \ 0.25466 \ 0.50000 \ 0 \ 0$ Y1 Υ 01 0 0.25000 0.00000 0.75000 0.20000 1.00000 0 0 0 01 2 0 0.50000 0.75000 0.50000 0.20000 0.50000 0 0 1 ! Polarisation Vectors of Symmetry Modes for each atom V MODES 12 Nm Atm Irrep Coeff Vx V٧ Vz 1 01 R4+ 0.000000 0.033105 0.000000 1.000000 1 O1 2 R4+ 0.000000 0.000000 0.066210 1.000000 R5+ 1.000000 2 Y1 0.000000 0.000000 -0.093158 3 O1 R5+ 0.000000 -0.033105 0.000000 1.000000 3 O1 2 R5+ 0.000000 0.000000 0.066210 1.000000 4 Y1 X5+ -0.093158 0.000000 0.000000 1.000000 5 O1 X5+ 0.000000 0.000000 0.000000 1.000000 5 O1 2 X5+ -0.093158 0.000000 0.000000 1.000000 M2+ -0.046579 0.000000 0.046579 1.000000 6 O1 6 O1 2 M2+ 0.000000 0.000000 0.000000 1.000000 7 O1 M3+ -0.046579 0.000000 -0.046579 1.000000 7 O1 2 M3+ 0.000000 0.000000 0.000000 1.000000 Amplitudes of Symmetry Modes A MODES 7 2 A1 R4+ -1.638396 111.000000 00000

A2 R5+	-0.173880	171.000000
A3_R5+	0.000000	0.000000
A4_X5+	-0.707782	131.000000
A5_X5+	-0.393053	141.000000
A6_M2+	0.000000	0.000000
A7_M3+	1.205090	121.000000

 → Less parameters
→ Physical meaning: separation of octahedron tilt and octahedron distortion

Pnma samples (x>0.05)

12

C2/c samples (x<0.01): Magnetic structure

IFFL

13

C2/c samples (x<0.01) Symmetry adapted mode analysis

Pune

No group-subgroup relationship between Pnma and C2/c !

 \rightarrow 1st order transition

- Large phase coexistence
- Negative thermal expansion

P4./m

P4/mhn

P4/r

P4/mc

C2/c

C2/c samples (x<0.01) Symmetry adapted mode analysis

TABLE VI. Summary of mode decomposition of BiCrO₃ compound with C2/c structure, indicating the amplitude (Å) of all intervening irrep distortion components at room temperature.

R4+

C2/c samples (x<0.01) Symmetry adapted mode analysis

Arrows: local electric dipoles

LD3 mode: Antiferroelectric

Summary

C.V. Colin et al, Phys. Rev. B 85, 224103 (2012)

Thanks to

Thank you for your attention !

Upgrade of D1B, a high flux neutrons diffractometer at ILL

New Multi-Detecto New Radial Oscillating Collimator (

- Angular coverage & definition: 128°/0.1°
- Detector efficiency @2.5 Å \geq 80%
- ³He-CF₄ PSD detector (1280 wires)
- Dadius 15 m

ROC reduces background and parasitic scattering from the sample environnement

Diffraction pattern of standard NAC sample inside a cryomagnet using the ROC

Group-Subgroup relationship: Ideal cubic perovskite

AMPLIMODES: YCrO₃

TABLE IV. Summary of mode decomposition of YCrO₃ compound with Pnma structure, indicating the amplitude (Å) of all intervening irrep distortion components at room temperature.

21

Bi-based perovskite: multiferroics type I

Ferroelectricity from the "stereochemically active lone pair" on Bi³⁺

+

Magnetism from a 3d transition metal (Fe³⁺,Mn³⁺,Cr³⁺)

•BiFeO₃ : <u>the</u> room temperature multiferroic *R* 3c , AF (weak ferro)

•BiCrO₃:

•BiMnO₃:

	Conac		
Diamètre utile des cellules	40mm	28mm	
Volume des capsules (Au,Pt,acier,CuBe,Ta,BN)	0.8 cm ³	0.2 cm ³	
Masse de produit (moy.)	2 g	0.5 g	
Gamme de pression	0 - 5.5 GPa	0 - 7 GPa	

Impurities: $Bi_2O_2CO_3$, γ - Bi_2O_3 , Cr_2O_3

2θ (°)

Magnetic structure: Pnma samples (x>0.05)

TABLE II. Basis vectors for the space group P nma with $k_{19} = (0, 0, 0)$. The decomposition of the magnetic representation for the Cr site (.5, .5, 0) is $\Gamma_{Mag} = 3\Gamma_1^1 + 0\Gamma_2^1 + 3\Gamma_3^1 + 0\Gamma_4^1 + 3\Gamma_5^1 + 0\Gamma_6^1 + 3\Gamma_7^1 + 0\Gamma_8^1$. The atoms of the nonprimitive basis are defined according to 1: (.5, .5, 0), 2: (0, 0, .5), 3: (.5, 0, 0), 4: (0, .5, .5). For notations see Wollan *et al*¹⁹

IR	$m_{\parallel a}$	$m_{\parallel b}$	$m_{\parallel c}$	Shubnikov Group
Γ_1	G	С	А	Pnma
Γ_3	В	А	С	Pnm'a'
Γ_5	Α	В	G	Pn'ma'
Γ_7	С	G	В	Pn'm'a

TABLE III. Basis vectors for the space group C 1 2/c 1 with $\mathbf{k}_6 = (0, 0, 0)$. Only shared magnetic representations for Cr_1 site (.25, .25, .5) the Cr_2 site (0, .235, .75) are shown.

	IR	$m_{\parallel a}$	$m_{\parallel b}$	$m_{\parallel c}$	Shubnikov Group
Cr_1					
	Γ_1	L_x	M_y	L_z	C2/c
	Γ_3	M_x	L_y	M_z	C2'/c'
Cr_2					
	Γ_1		M_y		C2/c
	Γ_3	M_x		M_z	C2'/c'

