

Plan

Introduction

Multiferroïques I et II

Soyons dynamique et non statique

S'amuser avec les multiferroïques

Matériaux Multiferroïques

Schmid, Ferroelectrics 162, 317 (1994).

1894 P. Curie débat des corrélations entre les propriétés magnétiques et électriques dans les cristaux de faible symétrie.

«la symétrie est la clef de ces corrélations»

1926 P. Debye *«magneto-elektrischer Richteffekt »*

1959 I. E. Dzyaloshinskii prédit l'effet magnétoélectrique dans Cr₂O₃ *Sov. Phys.-JETP 10, 628 (1959)*

Contrôle électrique du magnétisme **Contrôle magnétique de l'électricité**

 $M\alpha = G\beta\alpha E\beta$ \longleftrightarrow $P\alpha = G\beta\alpha B\beta$

1960 D. N. Astrov Première observation dans Cr₂O₃

Sov. Phys.-JETP 11. 708

Les premières idées

Problème

Technologie de l'information (disque dur, MRAM, spintronic...)

Extension spatiale du champ magnétique limite la miniaturisation des dispositifs

Pertes énergétiques colossales

Solution

Trouver des matériaux présentant un couplage magnétoélectrique fort

A. P. Pyatokov et A. K. Zvezdin Physics Uspekhi 55 557 (2012)

Evolution bibliographique de la thématique

Mots clef: multiferroïques

Published Items in Each Year 550

Plan

Introduction

Multiferroïques let II

Soyons dynamique et non statique

S'amuser avec les multiferroïques

Des jumeaux dizygotes

Multiferroïques de type I

- Bon ferroélectriques
- ✓ T_c etT_N hautes et mécanismes distints
- Couplage faible entre les ordres

Multiferroïques de type II

- Mauvais ferroélectriques
- Températures de transitions très basses
- Couplage fort entre les ordres

Daniel Khomskii, Physics 2, 20 (2009)

BiFeO₃ $P \sim 100 \ \mu C/cm^2$

 $T_{c} = 1100 K T_{N-AFM} = 640 K$ Fe³⁺ ions magnetism Bi³⁺ ions ferroelectricity

BiMnO₃

P~ 9-16 µC/cm²

Bon ferroélectriques

 $T_{c} = 800 K T_{N-AFM} = 110 K$ Mn³⁺ ions magnetism Bi³⁺ ions ferroelectricity

 \checkmark T_C et T_N hautes et mécanismes distints

 $Pb(Fe_{2/3}W_{1/3})O_{3}$ $P \sim 15 \ \mu C/cm^2$

 $T_{c} = 150-200K$ $T_{N-AFM} = 350K$ Fe³⁺ ions magnetism Pb²⁺ ions ferroelectricity

Mécanisme : paires esseulées

2e⁻ de valance ne participent pas à former une liaison sp

Dipôles locaux Haute polarisabilité

Couplage faible entre les ordres (constante diélectrique)

T. Kimura PRB 67, 180401R (2003) G. Catalan and J. F. Scott Adv. Mater. 21, 2463 (2009)

✓ Ferroélectricité géométrique

✓ Ferroélectricité électronique

✓ Ferroélectricité magnétique

✓ Ferroélectricité géométrique :

hexagonal RMnO₃, YCrO₃, K₂SeO₄, Cs₂CdI₄, BaNi(Mn,Co,Fe)F₄, ...

Effet magnetoélectrique faible

Couplage magnétoélastique géant

Type I/II ?

Rôle de la Terre Rare dans l'organisation des Mn³⁺

D. Meier et al. PRB 86, 184415 (2012)
S. Lee et al. Nature 451 805 (2008)
S. Petit et al. PRL 99, 266604 (2007)

✓ **Ferroélectricité électronique** : LuFeO₄, Pr_{1-x}Ca_xMnO₃, Ca₃Co_{2-x}Mn_xO₇, RMn₂O₅

Par example: **LuFeO**₄

frustration de charge

 $T_{_C}=320K\quad T_{_{N\text{-}AFM}}=320K\quad P\sim 25\;\mu C/cm^2$

Effet magnetoélectrique fort Variation de 25% de la constante diélectrique sous 1kOe

Par example: **RMn**₂**O**₅ ordre de charge + magnétostriction

Tc ~ 25-40 K $T_{\rm N}$ ~ 24-43K

 $P\sim 40 \ \mu C/cm^2$

Par example: **Pr**_{1-x}**Ca**_x**MnO**₃

ordre de charge et de liaison

 $T\sim 230~K~~T_{\rm CO}\sim 230K~~P\sim 4.4~\mu C/cm^2$

Sites Mn³⁺ et Mn⁴⁺ inéquivalents Distortion

S. Cheong et M. Mostovoy Nat. Mat 6, 13 (2007) J. Brink et D. Khomskii J. Phys.: Condens. Matter 20 434217 (2008)

✓ Ferroélectricité magnétique :

Structure de spin brise les symétries d'inversion spatiale et temporelle

Ferroélectricité Effet magnétoélectrique fort

Compound	Crystal structure	Magnetic ions	Spiral spin wave vector q	Ferroelectric temperature (K)	Spontaneous polarization (μ C m ⁻²)	References
LiCu ₂ O ₂	Orthorhombic (Pnma)	Cu ²⁺	(0.5, 0.174, 0)	<23	$P_c = 4$	[130]
LiCuVO ₄	Orthorhombic (Pnma)	Cu ²⁺	(0, 0.53, 0)	<3	$P_{a} = 20$	[134, 135]
Ni ₃ V ₂ O ₈	Orthorhombic (mmm)	Ni ²⁺	(0.28, 0, 0)	3.9-6.3	$P_{b} = 100$	[136]
RbFe(MoO ₄) ₂	Triangular (P3m1)	Fe ³⁺	(1/3, 1/3, 0.458)	< 3.8	$P_{c} = 5.5$	[140]
CuCrO ₂ , AgCrO ₂	Delafossite $(R\overline{3}m)$	Cr ³⁺	(1/3, 1/3, 0)	<24	30 ^b	[142]
NaCrO ₂ , LiCrO ₂	Ordered sock salt $(R\overline{3}m)$	Cr ³⁺	(1/3, 1/3, 0) and	< 60	Antiferroelectricity	[142]
	· · · · · · · · · · · · · · · · · · ·		(-2/3, 1/3, 1/2)			. ,
CuFeO ₂	Delafossite $(R\bar{3}m)$	Fe ³⁺	(b, b, 0) $b = 0.2-0.25$	<11	$P = 300 \ (\perp c) \ (H = 6 - 13T)^{a}$	[143]
$Cu(Fe, Al/Ga)O_2$ Al/Ga = 0.02	Delafossite $(R\overline{3}m)$	Fe ³⁺	?	<7	$P_{[110]} = 50$	[144–146]
$RMnO_3$ (R = Tb, Dy)	Orthorhombic (Pbnm)	Mn ³⁺	(0, k, 1) k = 0.2 - 0.39	<28	$P_{c} = 500$	[147-165]
CoCr ₂ O ₄	Cubic spinel (m3m)	Cr ³⁺	(b, b, 0) B = 0.63	< 26	$P_c = 2$	[181]
$AMSi_2O_6$ (A=Na,Li; M=Fe,Cr)	Monoclinic (C2/c)	Fe ³⁺ Cr ³⁺	?	<6	$P_{b} = 14$	[174]
MnWO ₄	Monoclinic $(Pc/2)$	Mn ²⁺	(-0.21, 0.5, 0.46)	7-12.5	$P_{h} = 55$	[166]
CuO	Monoclinic $(C2/c)$	Cu ²⁺	(0.506, 0, -0.843)	213-230	$P_{h} = 150$	[185]
$(Ba,Sr)_2Zn_2Fe_{12}O_{22}$	Rhomboheral Y-type hexaferrite	Fe ³⁺	$(0, 0, 3d) \ 0 < d < 1/2$	< 325	$150 (H = 1 \text{ T})^{a}$	[183]
$Ba_2Mg_2Fe_{12}O_{22}$	Rhomboheral Y-type hexaferrite	Fe ³⁺	//[001]	<195	$P_{[120]}$ =80 (H=0.06-4 T) ^a	[184]
ZnCr ₂ Se ₄	Cubic spinel	Cr ³⁺	(b, 0, 0)	< 20	_a	[179]
Cr ₂ BeO ₄	Orthorhombic	Cr ³⁺	(0, 0, b)	<28	3 ^b	[180]

K. F. Wang et al. Advan. in Phys. 58, 321 (2009)

✓ Ferroélectricité magnétique : o-RMnO₃

✓ Ferroélectricité magnétique : o-TbMnO₃ et Modèle KNB

Précession des spin \mathbf{S}_{j} dans le champ d'échange créé par \mathbf{S}_{i} Courant de spin $\mathbf{J}_{i,j} \propto \mathbf{S}_{i} \times \mathbf{S}_{j}$ Dipôle électrique $\mathbf{P}_{i,i} \propto \mathbf{r}_{i,i} \times \mathbf{J}_{i,i}$

S_p, **S**_j: magnetic moments

e_{ij} : unit vector connecting sites i, j

P: polarization

j_s: "spin current"

Polarisation purement électronique sans déplacement atomique

Katsura et al., Phys. Rev. Lett. 95, 057205 (2005)

✓ Ferroélectricité magnétique : o-TbMnO₃ et Modèle DMI

H. C. Walker et al. Science 333, 1273 (2011)

✓ Ferroélectricité magnétique : o-TbMnO₃

Comment générer une structure spirale ?

Interaction d'échange exaltée la distorsion orthorhombique du réseau

Comment est défini le plan spiral (ab ou bc) ?

Compétition entre anisotropie propre à l'ion et l'interaction DM

Mochizuki et al. PRL 104, 177206 (2010)

Quid des autres composés?

✓ Ferroélectricité magnétique : RMnO₃

I. Sergienko, et al. PRL 97, 227204 (2006) S. Picozzi et al. PRL 99, 227201 (2007)

D. Okuyama et al. PRB 84, 054440 (2011) N. Lee et al. PRB 84, 020101 (2011)

✓ Ferroélectricité magnétique : RMnO₃

Par example: **DyMnO**₃

Comportements attendu identique à celui de TbMnO₃

 $P\sim 0.25 \ \mu C/cm^2 \qquad \qquad P_{\rm DMI}\sim 0.15 \ \mu C/cm^2$

Interaction d'échange Dy-Mn par striction

 $P_{\rm Dy\text{-}Mn} \sim 0.10 \ \mu C/cm^2$

N. Zhang et al. Appl. Phys. Lett. 99, 102509 (2011)

Plan

nitrocluction

Multiferroïques let II

Soyons dynamique et non statique

S'amuser avec les multiferroïques

Les propriétés dynamiques

Degrés de liberté

Réseau (phonons optiques) ou excitations électroniques

Nouvelles excitations: les electromagnons

Charactère du magnon avec dipole électrique couplé à une radiation electromagnetique

Pimenov et al. Nature Phys 2, 97 (2006) A. B. Sushkov, PRL 98, 027202 (2007) **Comment se représenter un électromagnon ?**

Que sait t'on?

Composés : o-RMnO₃ (R=Gd, Tb, Dy, $Eu_{1-x}Y_x$), RMn₂O₅ (R=Y, Tb)

Règles de sélection sur la polarisation de E^{ω}

Les électromagnons ne sont pas induis par l'interaction Dzyaloshinskii-Moriya inverse

R. Valdés Aguilar, PRL 1012, 047203 (2009)

Stenberg et al. PRB 80, 094419 (2009) M. Mochizuki et al. PRL 104, 177206 (2010) P. Rovillain et al. PRL 107 027202 (2011) Plan

neitoeluction

Multiferroïques let II

Soyons dynamique et non statique

S'amuser avec les multiferroïques

Parois de domaines

T_c et $T_N > 300$ K Cycloïde de spin

Contrôle électrique des parois de domaines

Magnétotransport dans les parois de domaines

Q. He et al. PRL 108, 067203 (2012)

Variation du gap optique sur 2 nm lors du changement d'orientation entre domaines

Distortion locale de la structure associée à la polarisation

J. Seidel et al., Nature Mater. 8, 229 (2009) P. Maksymovych Nano lett 11 1906 (2011)

Effet photoélectrique/photostrictif

B. Kundys et al. Nat. Mater. 9, 803 (2010)

Elongation

Contrôle électrique des ondes de spins

Modification de 30% de la fréquence des ondes de spins en fonction du cycle de polarisation

> *P.* Rovillain et al. Nat. Mater. 9, 979 (2010) *R.* de Sousa et al. Arxiv. (2012)

Ingénierie des contraintes sur films

IC. Infante et al. Phys. Rev. Lett. 105, 079901 (2010)

Les contraintes affectent T_C mais peu T_N

D. Sando et al. Nat. Mater. en cours de refus ? (2013)

Conclusion

Progrès synthèse monocristaux, films, reprise épitaxiale d'oxydes glissement

Communauté du magnétisme/communauté ferroélectriques

✓ Délitement des frontières entre familles de multiferroïques

✓ Identification des interactions

Poids respectif de chacune d'elle dans chaque composé ? (DMI réduite, mise en avant de la magnétostriction, terre rare...)

Origine des électromagnons

Présence dans d'autres composés? Autres mécanismes ?

Etude de composés plus complexes: Langasites, Boracites...

