

Multiferroïques un rêve pour tous ?

Matériaux et Phénomènes Quantiques UMR 7162

Maximilien Cazayous

Future Computer

Matériaux Multiferroïques

Les premières idées

1894 P. Curie débat des corrélations entre les propriétés magnétiques et électriques dans les cristaux de faible symétrie.

> «la symétrie est la clef de ces corrélations»

1926 P. Debye *«magneto-elektrischer Richteffekt »*

1959 I. E. Dzyaloshinskii prédit l'effet magnétoélectrique dans Cr₂O₃ Sov. Phys.-JETP 10, 628 (1959)

> **Contrôle électrique** du magnétisme

Contrôle magnétique de l'électricité

 $M\alpha = G\beta\alpha E\beta$

 $P\alpha = G\beta\alpha B\beta$

1960 D. N. Astrov Première observation dans Cr₂O₃

Les premières idées

Problème

Technologie de l'information (disque dur, MRAM, spintronic...)

Extension spatiale du champ magnétique limite la miniaturisation des dispositifs

Pertes énergétiques colossales

Solution

Trouver des matériaux présentant un couplage magnétoélectrique fort

A. P. Pyatokov et A. K. Zvezdin Physics Uspekhi 55 557 (2012)

Evolution bibliographique de la thématique

Mots clef: multiferroïques

Published Items in Each Year

Mots clef: supraconducteurs

Multiferroïques de type I

- Bon ferroélectriques
- ✓ T_c etT_N hautes et mécanismes distints
- Couplage faible entre les ordres

Multiferroïques de type II

- Mauvais ferroélectriques
- Températures de transitions très basses
- Couplage fort entre les ordres

Daniel Khomskii, Physics 2, 20 (2009)

BiFeO₃

 $P\sim 100 \ \mu C/cm^2$

BiMnO₃

 $P \sim 9-16 \, \mu \text{C/cm}^2$

 $Pb(Fe_{2/3}W_{1/3})O_3$

 $P\sim 15 \ \mu C/cm^2$

✓ Bon ferroélectriques

$$T_{c} = 1100K T_{N-AFM} = 640K$$

Fe³⁺ ions magnetism

Bi³⁺ ions ferroelectricity

 $T_{c} = 800K \quad T_{N-AFM} = 110K$

Mn³⁺ ions magnetism

Bi³⁺ ions ferroelectricity

$$T_c = 150-200K$$
 $T_{N-AFM} = 350K$

Fe³⁺ ions magnetism Pb²⁺ ions ferroelectricity

 \checkmark T_C et T_N hautes et mécanismes distints

Mécanisme : paires esseulées

2e de valance ne participent pas à former une liaison sp

Dipôles locaux Haute polarisabilité

Couplage faible entre les ordres (constante diélectrique)

T. Kimura PRB 67, 180401R (2003)

G. Catalan and J. F. Scott Adv. Mater. 21, 2463 (2009)

- ✓ Ferroélectricité géométrique
- **✓** Ferroélectricité électronique

✓ Ferroélectricité magnétique

✓ Ferroélectricité géométrique :

hexagonal RMnO₃, YCrO₃, K₂SeO₄, Cs₂CdI₄, BaNi(Mn,Co,Fe)F₄, ...

Par example: **h-YMnO**₃

$$T_c = 950K$$
 $T_{N-AFM} = 77K$ $P \sim 5 \mu C/cm^2$

Effet magnetoélectrique faible

Couplage magnétoélastique *géant*

Mn sur des triangles

Magnétisme frustré (spins à 120°)

Mn-Mn échange < superéchange dans le plan

Organisation magnétique dans le plan

Mn-O-Mn supersuperéchange entre plan

Stabilisation de la structure 3D

Rôle de la Terre Rare dans l'organisation des Mn³+

Type I/II?

D. Meier et al. PRB 86, 184415 (2012)

S. Lee et al. Nature 451 805 (2008)

S. Petit et al. PRL 99, 266604 (2007)

✓ **Ferroélectricité électronique**: LuFeO₄, Pr_{1-x}Ca_xMnO₃, Ca₃Co_{2-x}Mn_xO₇, RMn₂O₅

Par example: **LuFeO**₄

frustration de charge

$$T_c = 320 K$$
 $T_{N-AFM} = 320 K$ $P \sim 25 \ \mu C/cm^2$

Effet magnetoélectrique fort Variation de 25% de la constante diélectrique sous 1kOe

Par example: **RMn**₂**O**₅ ordre de charge + magnétostriction

 $T_{\rm C} \sim 25-40 \ {\rm K} \ {\rm T}_{\rm N} \sim 24-43 {\rm K}$

 $P \sim 40 \mu C/cm^2$

Par example: **Pr**_{1-x}**Ca**_x**MnO**₃ ordre de charge et de liaison

 $T\sim 230~K~T_{CO}\sim 230K~P\sim 4.4~\mu C/cm^2$

Sites Mn³⁺ et Mn⁴⁺ inéquivalents Distortion

S. Cheong et M. Mostovoy Nat. Mat 6, 13 (2007)

J. Brink et D. Khomskii J. Phys.: Condens. Matter 20 434217 (2008)

✓ Ferroélectricité magnétique :

Structure de spin brise les symétries d'inversion spatiale et temporelle

Ferroélectricité Effet magnétoélectrique fort

Compound	Crystal structure	Magnetic ions	Spiral spin wave vector q	Ferroelectric temperature (K)	Spontaneous polarization ($\mu C m^{-2}$)	References
LiCu ₂ O ₂	Orthorhombic (Pnma)	Cu ²⁺	(0.5, 0.174, 0)	<23	$P_c = 4$	[130]
LiCuVO ₄	Orthorhombic (Pnma)	Cu ²⁺	(0, 0.53, 0)	< 3	$P_a = 20$	[134, 135]
$Ni_3V_2O_8$	Orthorhombic (mmm)	Ni ²⁺	(0.28, 0, 0)	3.9-6.3	$P_b = 100$	[136]
RbFe(MoO ₄) ₂	Triangular (P3m1)	Fe ³⁺	(1/3, 1/3, 0.458)	< 3.8	$P_c = 5.5$ 30 ^b	[140]
CuCrO2, AgCrO2	Delafossite $(R\overline{3}m)$	Cr ³⁺	(1/3, 1/3, 0)	< 24	30 ^b	[142]
NaCrO ₂ , LiCrO ₂	Ordered sock salt $(R\bar{3}m)$	Cr ³⁺	(1/3, 1/3, 0) and (-2/3, 1/3, 1/2)	< 60	Antiferroelectricity	[142]
CuFeO ₂	Delafossite $(R\bar{3}m)$	Fe ³⁺	(b, b, 0) $b = 0.2-0.25$	<11	$P = 300 \text{ ($\perp$c)} \text{ ($H=6-13T)}^a$	[143]
$Cu(Fe,AI/Ga)O_2$ AI/Ga = 0.02	Delafossite (R3m)	Fe ³⁺	?	<7	$P_{[110]} = 50$	[144–146]
$RMnO_3$ (R=Tb,Dy)	Orthorhombic (Pbnm)	Mn^{3+}	(0, k, 1) k = 0.2-0.39	< 28	$P_c = 500$	[147-165]
CoCr ₂ O ₄	Cubic spinel (m3m)	Cr ³⁺	(b, b, 0) B = 0.63	< 26	$P_c = 2$	[181]
$AMSi_2O_6$ ($A=Na,Li$; M=Fe,Cr)	Monoclinic (C2/c)	Fe ³⁺ Cr ³⁺	?	< 6	$P_b = 14$	[174]
$MnWO_4$	Monoclinic (Pc/2)	Mn^{2+}	(-0.21, 0.5, 0.46)	7-12.5	$P_b = 55$	[166]
CuO	Monoclinic (C2/c)	Cu ²⁺	(0.506, 0, -0.843)	213-230	$P_b = 150$	[185]
$(Ba,Sr)_2Zn_2Fe_{12}O_{22}$	Rhomboheral Y-type hexaferrite	Fe ³⁺	(0, 0, 3d) $0 < d < 1/2$	< 325	$150 (H=1 T)^a$	[183]
$Ba_2Mg_2Fe_{12}O_{22}$	Rhomboheral Y-type hexaferrite	Fe ³⁺	//[001]	< 195	$P_{[120]}$ =80 (H = 0.06–4 T) ^a	[184]
ZnCr ₂ Se ₄	Cubic spinel	Cr ³⁺	(b, 0, 0)	< 20	_a	[179]
Cr ₂ BeO ₄	Orthorhombic	Cr3+	(0, 0, b)	< 28	3 ^b	[180]

✓ Ferroélectricité magnétique : o-RMnO₃

✓ Ferroélectricité magnétique : o-TbMnO₃ et Modèle KNB

Précession des spin S_j dans le champ d'échange créé par S_i

Courant de spin $J_{i,j} \propto S_i \times S_j$

Dipôle électrique $\mathbf{P}_{i,j} \propto \mathbf{r}_{i,j} \times \mathbf{J}_{i,j}$

 S_{i} S_{j} : magnetic moments

e_{ij}: unit vector connecting sites i, j

P: polarization

 j_s : "spin current"

Polarisation purement électronique sans déplacement atomique

✓ Ferroélectricité magnétique : o-TbMnO₃ et Modèle

Structure spirale de spins

Ferromagnétisme

$$H = -JS_1 \bullet S_2$$

DM Term

$$H_{DM} = -\mathbf{d}_{12} \bullet S_1 \times S_2$$
$$\mathbf{d}_{12} = \mathbf{r}_{12} \times \mathbf{x}$$

Interaction Dzyaloshinskii-Moriya inverse

Formellement équivalent à KNB

TbMnO₃: $T < T_{N2}$

Structure spirale de spins

DMI inverse

Déplacement ionique

Sergienko and Dagotto, Phys. Rev. B 73, 094434 (2006)

 $P \sim 0.06 \,\mu\text{C/cm}^2$ Contribution des O : $\Delta O = 70 \text{ fm}$ P = 0.04 $\mu C/cm^2$ Contribution superéchange Tb-O-Mn Δ Tb = 21 fm $P = 0.02 \mu C/cm^2$

H. C. Walker et al. Science 333, 1273 (2011)

✓ Ferroélectricité magnétique : o-TbMnO₃

Comment générer une structure spirale ?

Interaction d'échange exaltée la distorsion orthorhombique du réseau

Comment est défini le plan spiral (ab ou bc) ?

Compétition entre anisotropie propre à l'ion et l'interaction DM

Mochizuki et al. PRL 104, 177206 (2010)

Quid des autres composés?

✓ Ferroélectricité magnétique : RMnO₃

Par example: **HoMnO**₃, multiferroïque de type E

Interaction d'échange Mn-Mn par striction $S_i \cdot S_i$

 $P_{\text{th\'eorique}} \sim 2~\mu C/cm^2$

$$P_{exp} \sim 0.5 \ \mu C/cm^2$$

R ion magnétique Interaction d'échange Ho-Mn par striction

- I. Sergienko, et al. PRL 97, 227204 (2006)
- S. Picozzi et al. PRL 99, 227201 (2007)

D. Okuyama et al. PRB 84, 054440 (2011) N. Lee et al. PRB 84, 020101 (2011)

✓ Ferroélectricité magnétique : RMnO₃

Par example: **DyMnO**₃

Comportements attendu identique à celui de TbMnO₃

 $P\sim 0.25~\mu C/cm^2$

 $P_{DMI} \sim 0.15 \,\mu\text{C/cm}^2$

Interaction d'échange Dy-Mn par striction

 $P_{\text{Dv-Mn}} \sim 0.10 \; \mu C/cm^2$

N. Zhang et al. Appl. Phys. Lett. 99, 102509 (2011)

Les propriétés dynamiques

Degrés de liberté

(magnon)
Magnétique

Réseau (phonons optiques) ou excitations électroniques

Nouvelles excitations: les electromagnons

Charactère du magnon avec dipole électrique couplé à une radiation electromagnetique

Conductivité optique
Nouveaux pics avec une
activité dipolaire

Electromagnon

Pimenov et al. Nature Phys 2, 97 (2006) A. B. Sushkov, PRL 98, 027202 (2007)

Comment se représenter un électromagnon?

Que sait t'on?

Composés: o-RMnO₃ (R=Gd, Tb, Dy, Eu_{1-x}Y_x), RMn₂O₅ (R=Y, Tb)

Règles de sélection sur la polarisation de ${f E}^{\omega}$

Les électromagnons ne sont pas induis par l'interaction Dzyaloshinskii-Moriya inverse *R. Valdés Aguilar, PRL 1012, 047203 (2009)*

Magnétostriction + spin-orbite Magnétostriction + anharmonicité cycloïde

$$\mathcal{H}_{\text{ex}} = \sum_{\langle i,j \rangle} J_{ij} S_i \cdot S_j$$
 Magnétostriction

Stenberg et al. PRB 80, 094419 (2009) M. Mochizuki et al. PRL 104, 177206 (2010) P. Rovillain et al. PRL 107 027202 (2011)

L'extraordinaire BiFeO

T_C et $T_N > 300 \text{ K}$ Cycloïde de spin

Parois de domaines

Variation du gap optique sur 2 nm lors du changement d'orientation entre domaines

Distortion locale de la structure associée à la polarisation

Contrôle électrique des parois de domaines

Magnétotransport dans les parois de domaines

- J. Seidel et al., Nature Mater. 8, 229 (2009)
- *P. Maksymovych Nano lett* 11 1906 (2011)

Q. He et al. PRL 108, 067203 (2012)

L'extraordinaire BiFeO

Effet photoélectrique/photostrictif

T. Choi et al. Science 324, 63 (2009)

Variation de la longueur du cristal de 12%

B. Kundys et al. Nat. Mater. 9, 803 (2010)

L'extraordinaire BiFeO₃

Contrôle électrique des ondes de spins

Modification de 30% de la fréquence des ondes de spins en fonction du cycle de polarisation

P. Rovillain et al. Nat. Mater. 9, 979 (2010) R. de Sousa et al. Arxiv. (2012)

L'extraordinaire BiFeO₃

Ingénierie des contraintes sur films

IC. Infante et al. Phys. Rev. Lett. 105, 079901 (2010)

Fort impact des contraintes sur l'onde de spin

Les contraintes affectent T_C mais peu T_N

et pourtant ...

D. Sando et al. Nat. Mater. en cours de refus ? (2013)

Conclusion

- Progrès synthèse monocristaux, films, reprise épitaxiale d'oxydes glissement
- ✓ Communauté du magnétisme/communauté ferroélectriques
- Délitement des frontières entre familles de multiferroïques

✓ Identification des interactions

Poids respectif de chacune d'elle dans chaque composé ? (DMI réduite, mise en avant de la magnétostriction, terre rare...)

Origine des électromagnons

Présence dans d'autres composés? Autres mécanismes?

Etude de composés plus complexes: Langasites, Boracites...

Multiferroïques un rêve pour tous ?

Maximilien Cazayous

Future Computer

