

Raman Scattering study of URu₂Si₂

<u>J. Buhot</u>, M.-A. Méasson, M. Cazayous, Y. Gallais, A. Sacuto Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, France

Collaborations:

R. Lobo LPEM, ESPCI-ParisTech, CNRS, UPMC, F-75231 Paris Cedex 5, France

P. Piekarz

Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland

F. Bourdarot, S. Raymond, G. Lapertot, D. Aoki SPSMS, UMR-E CEA / UJF-Grenoble 1, INAC, 38054 Grenoble, France

Outline

- ✓ The heavy fermion compound URu₂Si₂ and its mysterious Hidden order
- \checkmark Introduction to Raman Scattering
- \checkmark Raman scattering study of lattice dynamic of URu_2Si_2
- ✓ Raman Electronic signal in URu₂Si₂ compound
 Look for a gap opening
 CEF excitation at high energy
- ✓ Conclusion and outlook

Outline

✓ The heavy fermion compound URu₂Si₂ and its mysterious Hidden order

✓ Introduction to Raman Scattering

- \checkmark Raman scattering study of lattice dynamic of URu₂Si₂
- Raman Electronic signal in URu₂Si₂ compound
 Look for a gap opening
 CEF excitation at high energy

✓ Conclusion and outlook

First measurements in 1985

Palstra et al. PRL (1985)

Two transitions:

✓ At 17.5K (2^{nde} order) → Hidden Order (HO) Large entropy varariation ($\Delta S = 0.3$ Rln2)

 $\checkmark \text{ At } 1.5K \rightarrow SC$

First measurements in 1985

Palstra et al. PRL (1985)

Two transitions:

✓ At 17.5K (2^{nde} order) → Hidden Order (HO) Large entropy variation ($\Delta S = 0.3$ Rln2)

 $\checkmark \text{ At } 1.5K \rightarrow SC$

 $m_0 \approx 0.03 \ \mu_B/U$

 ✓ Too small to be order parameter
 ✓ Defects or stacking faults → not intrinsic!

P-T phase diagram of URu₂Si₂ compound

✓ <u>Several theoretical survey</u>:

Localized 5f electrons vs itinerant 5f electrons

Optical spectroscopy

Raman scattering studies

For 25 years, only two studies...

Cooper et al. PRB (1987)

Lampakis et al. Physica B (2006)

Never studied at very high energy (>600cm⁻¹)
 No complete study of the electronic Raman signal in all symmetries

Optical conductivity

<u>Two gaps:</u> → Below 400 cm⁻¹, **below ~50K (T_{KL})** → hybridization-gap \rightarrow At ~40 cm⁻¹, **below T**₀

Motivations of our study by Raman spectroscopy

✓ Investigate all symmetries for a wide energy range (up to 4000cm⁻¹)

 \checkmark Signature of the hidden order transition in Raman scattering?

✓ Opening of a gap in Raman spectroscopy? Symmetry?

✓ Look for CEF excitations (theory: multipolar order)

Outline

✓ The heavy fermion compound URu₂Si₂ and its mysterious Hidden order

\checkmark Introduction to Raman Scattering

 \checkmark Raman scattering study of lattice dynamic of URu₂Si₂

Raman Electronic signal in URu₂Si₂ compound Look for a gap opening CEF excitation at high energy

✓ Conclusion and outlook

Inelastic scattering of monochromatic light

NB: 8 cm⁻¹ = 1 meV

Raman intensity measured:

$$I_{s} \propto \frac{d^{2}\sigma}{d\Omega d\omega_{S}} = \frac{V\omega_{I}\omega_{S}^{3}}{(4\pi)^{2}c^{4}} \begin{vmatrix} \hat{\mathbf{e}}_{S} \cdot \frac{d\chi(\omega)}{d\xi} \cdot \hat{\mathbf{e}}_{I} \end{vmatrix}^{2} \langle \xi(\mathbf{q})\xi(\mathbf{q})^{*} \rangle_{\omega}$$

Differential cross-section

$$\begin{array}{c} \mathsf{Raman Tensor} \\ \rightarrow \text{ selection rules} \\ (\text{Group Theory}) \end{array} \qquad \begin{array}{c} \mathsf{Correlation function of} \\ \text{observable (phonons, magnons,...)} \end{aligned}$$

Selection rules for URu₂Si₂

 $URu_2Si_2 \rightarrow Space group: I4/mmm$ Point group: D4h

Outline

✓ The heavy fermion compound URu₂Si₂ and its mysterious Hidden order

✓ Introduction to Raman Scattering

\checkmark Raman scattering study of lattice dynamic of URu₂Si₂

Raman Electronic signal in URu₂Si₂ compound Look for a gap opening CEF excitation at high energy

✓ Conclusion and outlook

Lattice Dynamic

Raman Shift (cm⁻¹)

Intensity (arb. units)

Temperature dependence of phonon modes

 \checkmark No anomaly at T₀ for A_{1q} and E_q modes

✓ Position of A_{1g} and E_g modes → Classical behavior vs Temperature.

Temperature dependence of phonon modes

 \checkmark No anomaly at T₀ for A_{1g} and E_g modes

- ✓ Position of A_{1g} and E_g modes → Classical behavior vs Temperature.
- ✓ FWHM of E_g : Slight decrease below ~30K → Electron-phonon coupling below T_{KL} ? Hybridization-gap seen by optical conductivity?

Temperature dependence of phonon modes

 B_{1g}

Origin of the B_{1g} mode softening

 \checkmark Electron-phonon coupling ?

✓ Magneto-elestic coupling ?

✓ Anharmonic effects ?

Origin of the B_{1g} mode softening

 \checkmark Electron-phonon coupling ? \rightarrow No effect on FWHM

✓ Magneto-elastic coupling ?

✓ Anharmonic effects ?

Soft lattice dynamics

Butch et al. arXiv:1212.6238 (26 Dec 2012)

 \checkmark LO modes softening in the [110] direction in HO phase

✓ Not originate from simple magneto-elastic coupling

Origin of the B_{1g} mode softening

 \checkmark Electron-phonon coupling ? \rightarrow No effect on FWHM

- ✓ Magneto-elestic coupling ?
- \rightarrow Magnetic excitations do not affect phonon branch

✓ Anharmonic effects ?

Comparison with theoretical calculation and neutron scattering

q

Raman vs theoretical calculation

 ✓ Phonons dispersion curves calculated (P. Piekarz)

> DFT + Direct method K. Parlinski Collection SFN 12 161 (2011)

> ✓ Harmonic approximation ✓ T = 0 K

Raman vs theoretical calculation

Anharmonicity and Lattice parameter

For example:

 \checkmark Repeating calculations at Γ point including anharmonic effects

Anharmonicity and Lattice parameter

 \checkmark Repeating calculations at Γ point including anharmonic effects

Origin of the B_{1g} mode softening

 \checkmark Electron-phonon coupling ? \rightarrow No effect on FWHM

- ✓ Magneto-elestic coupling ?
- \rightarrow Magnetic excitations do not affect phonon branch

- ✓ Anharmonic effects ?
- \rightarrow To be checked with calculation

Origin of the B_{1g} mode softening

 \checkmark Electron-phonon coupling ? \rightarrow No effect on FWHM

- $\checkmark \text{Magneto-elestic coupling ?} \rightarrow \text{Magnetic excitations do} \\ \text{not affect phonon branch}$
- $\checkmark \text{ Anharmonic effects ? } \rightarrow \text{ To be checked with } \\ \textbf{calculation}$
- ✓ Coupling with another degree of freedom ?

Outline

✓ The heavy fermion compound URu₂Si₂ and its mysterious Hidden order

✓ Introduction to Raman Scattering

✓ Raman scattering study of lattice dynamic of URu₂Si₂

✓ Raman Electronic signal in URu₂Si₂ compound – Look for a gap opening – CEF excitation at high energy

✓ Conclusion and outlook

Optical far-infrared reflectivity of our sample

✓ Performed at ESPCI (R. Lobo, J. Buhot)

Look for a gap opening

The case of A_{1g} symmetry...

 \checkmark For all symmetry, no gap opening below 50K and below T_0

Look for a gap opening in E_q symmetry

 \checkmark No clear gap opening below T₀

✓ Slight increase at low frequency below 30K, to be checked

Outline

✓ The heavy fermion compound URu₂Si₂ and its mysterious Hidden order

✓ Introduction to Raman Scattering

✓ Raman scattering study of lattice dynamic of URu₂Si₂

✓ Raman Electronic signal in URu₂Si₂ compound
 - Look for a gap opening
 - CEF excitation at high energy

✓ Conclusion and outlook

CEF excitation in E_g symmetry

- ✓ New broad peak **at 770 cm⁻¹** (FWHM ~300-700 cm⁻¹)
- \checkmark Too large to be connected at a double phonon process

Comparison with neutron measurement

Park et al. PRB 66, 094502 (2002)

Energy (cm ⁻¹)	FWHM (cm ⁻¹)	CEF transition
395 ± 8	516 ± 16	$\Gamma_3 \rightarrow \Gamma_5^{(1)}$
798 ± 8	290 ± 16	$\Gamma_3 \rightarrow \Gamma_4$
1274 ± 8	717 ± 16	$\Gamma_3 \rightarrow \Gamma_5^{(2)}$

Comparison with neutron measurement

Park et al. PRB 66, 094502 (2002)

Energy (cm ⁻¹)	FWHM (cm ⁻¹)	CEF transition
395 ± 8	516 ± 16	$\Gamma_3 \rightarrow \Gamma_5^{(1)}$
798 ± 8	290 ± 16	12 2 4
1274 ± 8	717 ± 16	$\Gamma_3 \rightarrow \Gamma_5^{(2)}$

Selection rules in Raman scattering for CEF transitions

✓ First direct measurement of CEF transition

✓ New constrain for theoretical schemes (localized model)

Comparison with a complete theoretical CEF scheme

 \rightarrow Few complete schemes with all CEF levels, particularly at high energy

Santini et al. PRL 73, 7 (1994)

 $\checkmark\,$ Two visible transitions in E_{g} symmetry can correspond to observed excitation at high energy

Conclusion

For lattice dynamic...

- \checkmark No anomaly at T₀ for A_{1g}, B_{1g} and E_g phonons modes
- \checkmark Temperature dependence of the B_{1g} phonon mode unusual:

Anharmonic effect ? Coupling with another degree of freedom (multipolar)? ...

Importance of the lattice dynamic!

For electronic signal...

 \checkmark No clear gap opening below T_{KL} and T_{0}

CEF signature at high energy: new constrain for future theoretical schemes

✓ Repeating calculations of phonon energies at Γ point including anharmonic effects

✓ Study under magnetic field (10 T): splitting of CEF doublets

✓ High Pressure study through the HO to AF transition