Normal-state properties of YBa₂Cu₃O_y in high magnetic fields

Toulouse 80T pulsed field Grenoble 35T static field

Sven Badoux LNCMI

- C. Proust (T)
- D. Vignolles (T)
- B. Vignolle (T)
- D. LeBœuf (T)
- S. Lepault (T)
- L. Malone (G)
- M-H. Julien (G)
- *T. Wu (G)*

SHERBROOKE

- L. Taillefer
- N. Doiron-Leyraud

N. Hussey

A. Carrington

CINIS

- D. Bonn
- B. Ramshaw
- J. Day
- R. Liang
- W. Hardy

Phase diagram

CINIS

séminaire Roscoff. 09 janvier 2013

MC

LNCMI

cnrs

séminaire Roscoff. 09 janvier 2013

VIC

LNCMI

Drastic change of the Fermi surface size

Hall coefficients in Cuprates

Overdoped cuprates: -Hole pocket

Underdoped cuprates: -Electron pocket at low T

Fermi surface reconstruction

What is the order responsible for the reconstruction?

Charge order detected by NMR

Ultrasound

- Sound velocity: thermodynamic quantity related to the elastic constants of a solid
- Sensitivity ~1ppm
- No indication about the nature of the transition

$$v_s^2 = rac{c_{ij}}{
ho}$$
; $c_{ij} = rac{\partial^2 F}{\partial \varepsilon_i \partial \varepsilon_j}$ ~km/s

CINIS

Determination of B_m (solid liquid vortex transition)

Sound velocity

Derivative

Magnetoresistance

Determination of B_m (solid liquid vortex transition)

Transition is in good agreement with the expected phase diagram

Tracking of the anomaly B_{co}

What is the nature of the transition responsible for this anomaly?

Tracking of the charge order transition B_{co}

First thermodynamic determination of the field induced competing charge order

Symmetry of charge order

Mode	Propagation vector q	Polarisation vector u
<i>C</i> ₁₁	[1,0,0]	[1,0,0]
C44	[0,1,0]	[0,0,1]
<i>C</i> 55	[1,0,0]	[0,0,1]
<i>C</i> 66	[0,1,0]	[1,0,0]

Order parameter-strain coupling:

$$F_c = g_{mn} Q^m \varepsilon^n$$

Such coupling is symmetry allowed only if ϵ^n and Q^m transform according to the same irreducible representation

Symmetry of charge order

Bi-axial charge order

Conclusion

- Charge order in competition with superconductivity
- Sound velocity is at the moment the only <u>thermodynamic</u> probe available to study in high field the charge order observed in underdoped cuprates
- Bi-axial charge order detected by sound velocity

séminaire Roscoff. 09 janvier 2013

CNTS

Doping dependence of Seebeck coefficients in YBCO and Eu-LSCO

Doping dependence of Hall coefficients in YBCO

D. LeBoeuf et al, PRB'11

CNTS

Irr. Rep.	Ε	C_2^z	C_2^y	C_2^x	Basis functions	Symmetric strains
A_{1g}	1	1	1	1	x^2, y^2, z^2	Volume strains : ε_1
B _{1g}	1	1	- 1	-1	z, xy	ε ₆
B _{2g}	1	-1	1	-1	y, xz	ε ₅
B _{3g}	1	-1	-1	1	x, yz	ϵ_4

CNTS

Field stabilized charge-stripe order in competition with superconductivity

 T_{co}

30 25 С "Normal" D 20 Н H_{c2} Μ Ê 15 Stripes ш 10 SC+ SC 5 Stripes Ĥ 0 10 30 60 0 20 40 50 $t_c(0)$ t_c T (K)

(Adapted from Demler et al, PRL'01)

Phase diagram of the competition between SC

and stripe order tuned by a magnetic field at T=0

CINIS

CNTS

*C*₄₄

C₆₆

Mr

小 LNCMI

D. LeBoeuf et al.

Irreversibility field: YBa₂Cu₃O_y

CILLS

XX

小八 LNCMI

CNTS

séminaire Roscoff, 09 janvier 2013

MG

秋

For overdoped polycristalline TI-2201: $\gamma_{el} = 7 \pm 2 \text{ mJ/mol.K}^2$

(Loram et al, Physica C'94)

All the numbers are in excellent agreement with

- in-field probes: AMRO, Hall effect

- zero field probes: ARPES, thermodynamic ...

